Artificial Intelligence in Stock Trading
machine learning, algorithmic trading, predictive analytics, financial markets, data mining, risk assessment, portfolio management, quantitative analysis, sentiment analysis, automation, big data, neu
The AI Revolution Series 43
타우루스
2025년 02월 12일 출간
(개의 리뷰)
(
0%의 구매자)
- eBook 상품 정보
- AI(생성형) 활용 제작 도서
- 파일 정보 ePUB (0.49MB)
- ISBN 9791194679424
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
작품소개
이 상품이 속한 분야
"Artificial Intelligence in Stock Trading is an essential guide for anyone looking to navigate the complex world of financial markets using cutting-edge technologies. This book delves into the transformative role of artificial intelligence (AI) in stock trading, exploring how machine learning, algorithmic trading, and predictive analytics are reshaping investment strategies and decision-making processes.
As financial markets become increasingly data-driven, understanding the intricacies of big data and data mining is crucial for successful trading. This book provides a comprehensive overview of how AI algorithms can analyze vast amounts of real-time data to identify trends, make accurate market predictions, and enhance portfolio management. Readers will discover various trading strategies powered by quantitative analysis and sentiment analysis, allowing for a deeper understanding of market psychology and behavioral finance.
The book also emphasizes the importance of risk assessment and performance evaluation, guiding readers through the process of backtesting trading strategies to ensure their effectiveness. With the rise of hedge funds and robo-advisors, this guide offers insights into the automation of trading processes and the use of trading bots, empowering investors to make informed decisions with confidence.
Whether you're a seasoned trader or a novice investor, Artificial Intelligence in Stock Trading equips you with the knowledge and tools necessary to thrive in today’s fast-paced financial environment. By harnessing the power of AI and machine learning, you can unlock new opportunities for investment analysis and stock forecasting, ultimately leading to better financial outcomes and enhanced trading performance. Join us on this journey to understand the future of trading and investment in the age of artificial intelligence."
As financial markets become increasingly data-driven, understanding the intricacies of big data and data mining is crucial for successful trading. This book provides a comprehensive overview of how AI algorithms can analyze vast amounts of real-time data to identify trends, make accurate market predictions, and enhance portfolio management. Readers will discover various trading strategies powered by quantitative analysis and sentiment analysis, allowing for a deeper understanding of market psychology and behavioral finance.
The book also emphasizes the importance of risk assessment and performance evaluation, guiding readers through the process of backtesting trading strategies to ensure their effectiveness. With the rise of hedge funds and robo-advisors, this guide offers insights into the automation of trading processes and the use of trading bots, empowering investors to make informed decisions with confidence.
Whether you're a seasoned trader or a novice investor, Artificial Intelligence in Stock Trading equips you with the knowledge and tools necessary to thrive in today’s fast-paced financial environment. By harnessing the power of AI and machine learning, you can unlock new opportunities for investment analysis and stock forecasting, ultimately leading to better financial outcomes and enhanced trading performance. Join us on this journey to understand the future of trading and investment in the age of artificial intelligence."
"1. Understanding Machine Learning in Finance
2. The Role of Algorithmic Trading in Modern Markets
3. Predictive Analytics: Transforming Stock Predictions
4. Impact of Big Data on Investment Strategies
5. Data Mining Techniques for Stock Market Analysis
6. Risk Assessment Models for Financial Investments
7. Portfolio Management Strategies with AI
8. Quantitative Analysis: A Deep Dive
9. Sentiment Analysis in Stock Trading
10. Automating Trading Strategies with AI
11. Utilizing Neural Networks for Market Forecasting
12. Developing Effective Trading Strategies
13. Investment Analysis in the Era of AI
14. Market Prediction Techniques Using AI
15. Exploring AI Algorithms for Trading
16. Stock Forecasting: Methods and Best Practices
17. The Importance of Real-Time Data in Trading
18. Behavioral Finance and AI Integration
19. Hedge Funds and Algorithmic Trading
20. The Rise of Robo-Advisors in Investment Management
21. Enhanced Decision-Making through AI
22. Backtesting Trading Strategies Using Historical Data
23. Performance Evaluation of Algorithmic Traders
24. Trading Bots: Revolutionizing the Trading Landscape
25. The Future of Stock Trading with AI
26. Ethical Considerations in AI Trading
27. Building a Robust Trading Infrastructure
28. Challenges in Implementing AI in Finance
29. The Evolution of Quantitative Trading
30. Machine Learning Models for Price Prediction
31. The Synergy of Human Insight and AI
32. Financial Market Dynamics and AI Applications
33. Advanced Techniques in Risk Management
34. Leveraging AI for Asset Allocation
35. The Role of AI in Market Volatility
36. AI-Driven Insights for Retail Investors
37. Integrating Alternative Data into Trading Models
38. The Psychology of Trading: AI Perspectives
39. Enhancing Trading Performance with Machine Learning
40. AI in Emerging Markets: Opportunities and Risks
41. The Intersection of Technology and Finance
42. Customizing Trading Algorithms for Individual Needs
43. AI-Powered Forecasting vs. Traditional Methods
44. The Impact of Regulatory Changes on Algorithmic Trading
45. Trends in AI Research for Financial Markets
46. Building Effective Trading Teams with AI Tools
47. Harnessing AI for Predictive Maintenance in Trading
48. Case Studies: Successful AI Applications in Finance
49. The Role of Cloud Computing in Algorithmic Trading
50. Future Trends in AI and Stock Trading Innovation"
2. The Role of Algorithmic Trading in Modern Markets
3. Predictive Analytics: Transforming Stock Predictions
4. Impact of Big Data on Investment Strategies
5. Data Mining Techniques for Stock Market Analysis
6. Risk Assessment Models for Financial Investments
7. Portfolio Management Strategies with AI
8. Quantitative Analysis: A Deep Dive
9. Sentiment Analysis in Stock Trading
10. Automating Trading Strategies with AI
11. Utilizing Neural Networks for Market Forecasting
12. Developing Effective Trading Strategies
13. Investment Analysis in the Era of AI
14. Market Prediction Techniques Using AI
15. Exploring AI Algorithms for Trading
16. Stock Forecasting: Methods and Best Practices
17. The Importance of Real-Time Data in Trading
18. Behavioral Finance and AI Integration
19. Hedge Funds and Algorithmic Trading
20. The Rise of Robo-Advisors in Investment Management
21. Enhanced Decision-Making through AI
22. Backtesting Trading Strategies Using Historical Data
23. Performance Evaluation of Algorithmic Traders
24. Trading Bots: Revolutionizing the Trading Landscape
25. The Future of Stock Trading with AI
26. Ethical Considerations in AI Trading
27. Building a Robust Trading Infrastructure
28. Challenges in Implementing AI in Finance
29. The Evolution of Quantitative Trading
30. Machine Learning Models for Price Prediction
31. The Synergy of Human Insight and AI
32. Financial Market Dynamics and AI Applications
33. Advanced Techniques in Risk Management
34. Leveraging AI for Asset Allocation
35. The Role of AI in Market Volatility
36. AI-Driven Insights for Retail Investors
37. Integrating Alternative Data into Trading Models
38. The Psychology of Trading: AI Perspectives
39. Enhancing Trading Performance with Machine Learning
40. AI in Emerging Markets: Opportunities and Risks
41. The Intersection of Technology and Finance
42. Customizing Trading Algorithms for Individual Needs
43. AI-Powered Forecasting vs. Traditional Methods
44. The Impact of Regulatory Changes on Algorithmic Trading
45. Trends in AI Research for Financial Markets
46. Building Effective Trading Teams with AI Tools
47. Harnessing AI for Predictive Maintenance in Trading
48. Case Studies: Successful AI Applications in Finance
49. The Role of Cloud Computing in Algorithmic Trading
50. Future Trends in AI and Stock Trading Innovation"
작가정보
저자(글) 씨익북스 편집부
"세상을 아름다운 지식으로 물들이자" 위 모토를 바탕으로 다양한 지식 서적을 보급하고 있다.
이 상품의 총서
Klover리뷰 (0)
Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
