Deep Learning for Image Recognition
artificial intelligence, computer vision, neural networks, convolutional neural networks, feature extraction, image classification, object detection, image segmentation, dataset preparation, transfer
The AI Revolution Series 8
타우루스
2025년 02월 12일 출간
(개의 리뷰)
(
0%의 구매자)
- eBook 상품 정보
- AI(생성형) 활용 제작 도서
- 파일 정보 ePUB (0.43MB)
- ISBN 9791194679073
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
작품소개
이 상품이 속한 분야
"Deep Learning for Image Recognition is a comprehensive guide designed for both beginners and experienced practitioners in the field of artificial intelligence and computer vision. This book delves into the intricacies of image recognition using deep learning techniques, particularly focusing on convolutional neural networks (CNNs), which have revolutionized the way machines understand visual data.
Readers will embark on a journey through the foundational concepts of neural networks and gradually progress to advanced topics such as feature extraction, image classification, object detection, and image segmentation. The book emphasizes the importance of dataset preparation, providing insights on how to curate, label, and preprocess data effectively to train robust models.
One of the standout features of this book is its coverage of transfer learning and data augmentation techniques, which are essential for enhancing model performance without the need for extensive datasets. Readers will learn how to leverage pre-trained models to save time and resources while improving accuracy.
Additionally, the book addresses various training techniques and the challenges of overfitting, ensuring that readers are equipped with the knowledge to fine-tune their models for optimal results. Performance evaluation methods are discussed in detail, allowing readers to assess their models rigorously.
Utilizing popular deep learning frameworks such as TensorFlow and Keras, along with practical applications of OpenCV, this book provides hands-on examples and projects that encourage experimentation and real-time processing capabilities. The inclusion of GPU acceleration techniques further aids in optimizing model training and inference speeds.
With a blend of theoretical knowledge and practical implementation, Deep Learning for Image Recognition serves as an essential resource for anyone looking to master the art of image recognition through deep learning. Whether you're aiming to build intelligent systems for autonomous vehicles, medical imaging, or security surveillance, this book will guide you through the complexities of developing state-of-the-art image recognition solutions."
Readers will embark on a journey through the foundational concepts of neural networks and gradually progress to advanced topics such as feature extraction, image classification, object detection, and image segmentation. The book emphasizes the importance of dataset preparation, providing insights on how to curate, label, and preprocess data effectively to train robust models.
One of the standout features of this book is its coverage of transfer learning and data augmentation techniques, which are essential for enhancing model performance without the need for extensive datasets. Readers will learn how to leverage pre-trained models to save time and resources while improving accuracy.
Additionally, the book addresses various training techniques and the challenges of overfitting, ensuring that readers are equipped with the knowledge to fine-tune their models for optimal results. Performance evaluation methods are discussed in detail, allowing readers to assess their models rigorously.
Utilizing popular deep learning frameworks such as TensorFlow and Keras, along with practical applications of OpenCV, this book provides hands-on examples and projects that encourage experimentation and real-time processing capabilities. The inclusion of GPU acceleration techniques further aids in optimizing model training and inference speeds.
With a blend of theoretical knowledge and practical implementation, Deep Learning for Image Recognition serves as an essential resource for anyone looking to master the art of image recognition through deep learning. Whether you're aiming to build intelligent systems for autonomous vehicles, medical imaging, or security surveillance, this book will guide you through the complexities of developing state-of-the-art image recognition solutions."
"1. Introduction to Deep Learning and Image Recognition
2. Overview of Artificial Intelligence in Vision
3. Understanding Computer Vision Fundamentals
4. The Role of Neural Networks in Image Processing
5. Convolutional Neural Networks Explained
6. Key Concepts in Feature Extraction
7. Techniques for Image Classification
8. Object Detection Methods and Applications
9. Introduction to Image Segmentation
10. Preparing Datasets for Deep Learning
11. The Importance of Transfer Learning
12. Enhancing Models with Data Augmentation
13. Fundamentals of Supervised Learning
14. Exploring Unsupervised Learning Techniques
15. Effective Training Techniques for Neural Networks
16. Evaluating Model Performance
17. Popular Deep Learning Frameworks
18. Getting Started with Python for Image Recognition
19. Building Models with TensorFlow
20. Using Keras for Rapid Prototyping
21. Image Processing with OpenCV
22. Leveraging GPU Acceleration for Training
23. Optimizing Deep Learning Models
24. Understanding Overfitting and Its Solutions
25. Real-Time Processing in Image Recognition
26. Applications of Deep Learning in Healthcare
27. Deep Learning in Autonomous Vehicles
28. Utilizing Image Recognition in Retail
29. Security and Surveillance Applications
30. Enhancing User Experience with Image Recognition
31. The Future of Deep Learning in Vision
32. Challenges in Image Recognition
33. Ethical Considerations in AI and Image Processing
34. Case Studies of Successful Implementations
35. Understanding the Model Training Process
36. Hyperparameter Tuning for Optimal Performance
37. Visualizing Neural Network Outputs
38. The Role of Activation Functions
39. Transfer Learning for Limited Data Scenarios
40. Leveraging Pre-trained Models
41. The Impact of Batch Normalization
42. Implementing Dropout to Prevent Overfitting
43. The Importance of Cross-Validation
44. Advanced Techniques in Object Detection
45. Image Recognition in Natural Language Processing
46. Exploring Generative Adversarial Networks
47. The Role of Convolutional Layers
48. How to Build an Image Recognition Pipeline
49. Best Practices for Model Deployment
50. Future Trends in Deep Learning for Image Recognition"
2. Overview of Artificial Intelligence in Vision
3. Understanding Computer Vision Fundamentals
4. The Role of Neural Networks in Image Processing
5. Convolutional Neural Networks Explained
6. Key Concepts in Feature Extraction
7. Techniques for Image Classification
8. Object Detection Methods and Applications
9. Introduction to Image Segmentation
10. Preparing Datasets for Deep Learning
11. The Importance of Transfer Learning
12. Enhancing Models with Data Augmentation
13. Fundamentals of Supervised Learning
14. Exploring Unsupervised Learning Techniques
15. Effective Training Techniques for Neural Networks
16. Evaluating Model Performance
17. Popular Deep Learning Frameworks
18. Getting Started with Python for Image Recognition
19. Building Models with TensorFlow
20. Using Keras for Rapid Prototyping
21. Image Processing with OpenCV
22. Leveraging GPU Acceleration for Training
23. Optimizing Deep Learning Models
24. Understanding Overfitting and Its Solutions
25. Real-Time Processing in Image Recognition
26. Applications of Deep Learning in Healthcare
27. Deep Learning in Autonomous Vehicles
28. Utilizing Image Recognition in Retail
29. Security and Surveillance Applications
30. Enhancing User Experience with Image Recognition
31. The Future of Deep Learning in Vision
32. Challenges in Image Recognition
33. Ethical Considerations in AI and Image Processing
34. Case Studies of Successful Implementations
35. Understanding the Model Training Process
36. Hyperparameter Tuning for Optimal Performance
37. Visualizing Neural Network Outputs
38. The Role of Activation Functions
39. Transfer Learning for Limited Data Scenarios
40. Leveraging Pre-trained Models
41. The Impact of Batch Normalization
42. Implementing Dropout to Prevent Overfitting
43. The Importance of Cross-Validation
44. Advanced Techniques in Object Detection
45. Image Recognition in Natural Language Processing
46. Exploring Generative Adversarial Networks
47. The Role of Convolutional Layers
48. How to Build an Image Recognition Pipeline
49. Best Practices for Model Deployment
50. Future Trends in Deep Learning for Image Recognition"
작가정보
저자(글) 씨익북스 편집부
"세상을 아름다운 지식으로 물들이자" 위 모토를 바탕으로 다양한 지식 서적을 보급하고 있다.
이 상품의 총서
Klover리뷰 (0)
Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
