본문 바로가기

추천 검색어

실시간 인기 검색어

파이썬으로 실무에 바로 적용하는 머신 러닝

강봉주 지음
에이콘온

2024년 11월 01일 출간

(개의 리뷰)
( 0%의 구매자)
eBook 상품 정보
파일 정보 pdf (18.61MB)
ISBN 9791194409014
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
  • sam 무제한 이용가능
  • sam 프리미엄 이용가능

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

작품소개

이 상품이 속한 분야

머신 러닝을 처음 접하는 독자들이 구현 언어, 구현 패키지, 구현 편집기를 포함해 종합적으로 이해하고 바라볼 수 있도록 안내하는 책이다. 머신 러닝의 기본 개념부터 가장 범용적이고 활용도가 높은 알고리즘을 예제를 통해 설명한다. 더불어 단순한 설명으로만 멈추지 않고, 한 걸음 더 나아가 수식적인 해석도 할 수 있도록 안내한다.
1장. 머신 러닝 개요
__1.1 머신 러닝의 정의
__1.2 머신 러닝의 응용 분야
__1.2.1 가상 개인 비서
__1.2.2 구글 맵
__1.2.3 상품 추천
__1.3 머신 러닝의 기술적 단계
__1.4 머신 러닝 알고리즘
__1.5 머신 러닝 알고리즘의 범위
__1.6 머신 러닝 알고리즘의 구현


2장. 파이썬 설치
__2.1 개요
__2.2 아나콘다를 이용한 파이썬 설치
__2.2.1 아나콘다 내려받기
__2.2.2 아나콘다 설치
__2.3 파이참 내려받기 및 설치
__2.4 텐서플로 설치
__2.5 케라스 설치
__2.6 추가 패키지 설치 및 환경 변수 설정


3장. 파이참 개요
__3.1 개요
__3.2 프로젝트 생성
__3.3 전체 화면 구성
__3.4 개발 환경 맞춤
__3.5 코드 작성 도우미 기능
__3.6 파이썬 파일 생성
__3.7 탐색
__3.8 디버깅
__3.9 버전 관리
__3.10 재구성
__3.11 단축키 찾기


4장. 파이썬 언어에 대한 이해
__4.1 개요
__4.2 데이터형
__4.3 식별자의 표기
__4.4 값의 할당
__4.5 형변환
__4.6 열 컨테이너 인덱싱
__4.7 논리 연산자
__4.8 문 구성
__4.9 모듈 가져오기
__4.10 조건문
__4.11 수학 함수
__4.12 조건 반복문
__4.13 컨테이너형 일반 연산
__4.14 리스트 연산
__4.15 딕셔너리 연산
__4.16 집합 연산
__4.17 함수 정의
__4.18 문자열 연산
__4.19 포맷 구성하기


5장. 패키지 이해
__5.1 개요
__5.2 배열 생성
__5.3 배열 연산
__5.4 배열 요소 값 정하기
__5.5 다차원 배열
__5.6 배열 조각내기
__5.7 팬시 인덱싱
__5.8 배열 생성자
__5.9 배열의 추가(행 또는 열)
__5.10 배열의 축과 계산
__5.11 배열의 방송


6장. 판다스 패키지 이해
__6.1 개요
__6.2 데이터 구조
__6.3 부분 데이터 구성
__6.4 데이터 요약
__6.5 신규 열 생성
__6.6 결측값 처리
__6.7 데이터 결합
__6.8 그룹화
__6.9 모양 변경


7장. Matplotlib 패키지 이해
__7.1 개요
__7.2 데이터 준비
__7.3 그래프 준비
__7.4 그래프 생성
__7.5 그래프 수정
__7.6 그래프 저장
__7.7 그래프 보여주기 및 초기화


8장. scikit-learn 패키지 이해
__8.1 개요
__8.2 데이터 불러오기
__8.3 데이터 분할
__8.4 모델 적합 및 평가
__8.5 모수 추정값
__8.6 비지도 학습의 예


9장. 케라스 패키지 이해
__9.1 개요
__9.2 다층 신경망 구현
__9.3 심층 신경망 구현


10장. 표기법


11장. 모델 평가와 선택
__11.1 개요
__11.2 훈련 데이터
__11.3 모델 적합도의 측정
__11.4 편향-분산 균형


12장. 선형 회귀에 의한 머신러닝 구조에 대한 이해
__12.1 개요
__12.2 가설함수와 비용함수
__12.3 알고리즘
__12.4 비용함수의 원천


13장. 분류 문제와 로지스틱회귀분석
__13.1 개요
__13.2 선형회귀 대 로지스틱회귀
__13.3 비용함수
__13.4 로그-오즈
__13.5 연결 함수
__13.6 분류 문제에서의 모델 평가
__13.7 소프트맥스 회귀
__13.8 예제


14장. 모델 선택 및 정규화
__14.1 개요
__14.2 교차 검증
__14.3 변수 선택
__14.4 정규화 과정과 변수 선택
__14.5 예제


15장. 분류와 회귀 나무
__15.1 개요
__15.2 회귀 나무
__15.3 최적 회귀 나무의 선택
__15.4 분류 나무
__15.5 나무의 몇 가지 이슈
__15.6 예제


16장. 랜덤 포레스트
__16.1 개요
__16.2 배깅
__16.3 OOB 오차
__16.4 변수 중요도
__16.5 랜덤 포레스트 알고리즘
__16.6 랜덤 포레스트에서의 변수 중요도
__16.7 예제


17장. 그래디언트 부스팅
__17.1 개요
__17.2 부스팅
__17.3 ADABOOST.M1
__17.4 부스팅과 가법 모델
__17.5 전진 순차방식 가법 모델링
__17.6 지수 손실함수와 적응 부스팅
__17.7 부스팅의 확장
__17.8 부스팅의 초 모수 조정
__17.9 부스팅의 정규화
__17.10 예제


18장. 서포트 벡터 머신
__18.1 개요
__18.2 로지스틱회귀와 초평면
__18.3 표기법
__18.4 마진과 최적 마진 분류기(optimal margin classifier)
__18.5 라그랑지 쌍대성
__18.6 라그랑지 쌍대성을 이용한 최대 마진 분류기
__18.7 커널
__18.8 정규화와 비분리 경우
__18.9 여유 변수(slack variable)와 초 모수 C
__18.10 비용함수
__18.11 서포트 벡터 머신의 모수 추정
__18.12 예제: 커널 함수로 분리 가능한 경우(하드 마진)
__18.13 예제: 커널 함수로 분리가 불가능한 경우(소프트 마진)
__18.14 예제: 선형 이외의 커널 함수 적용
__18.15 초 모수의 결정
__18.16 예제: [BANK] 데이터 적용


19장. 다층 신경망
__19.1 개요
__19.2 표기법
__19.3 전진 패스
__19.4 활성함수
__19.5 전진 패스의 예시
__19.6 후진 패스
__19.7 후진 패스의 예시
__19.8 초깃값 주기
__19.9 기울기 소멸 문제
__19.10 입력변수의 표준화
__19.11 과적합 문제
__19.12 예제: [BANK] 데이터 적용


20장. 합성곱 신경망
__20.1 개요
__20.2 합성곱층
__20.3 결합층
__20.4 완전연결층
__20.5 합성곱 신경망 아키텍처의 예시
__20.6 모수의 추정
__20.7 예제: [DIGITS] 데이터 적용(다층 신경망)
__20.8 예제: [DIGITS] 데이터 적용(합성곱 신경망)


21장. 순환 신경망
__21.1 개요
__21.2 기본 순환 신경망
__21.3 모수의 추정
__21.4 후진 패스 예제
__21.5 장단기 기억 신경망
__21.6 LSTM 예시


22장. 특이값 분해
__22.1 개요
__22.2 정의
__22.3 분해 행렬의 계산
__22.4 특이값 분해 계산
__22.5 특이값 분해 예제: 추천 시스템


23장. 주성분 분석
__23.1 개요
__23.2 정의
__23.3 주성분의 계산
__23.4 주성분을 이용한 차원 축소
__23.5 주성분의 기학학적 의미
__23.6 주성분의 계산 예제
__23.7 주성분을 이용한 분석(예: MNIST 손글씨 숫자 데이터)


24장. 연관 분석
__24.1 개요
__24.2 표기법
__24.3 지지도, 신뢰도 그리고 향상도
__24.4 APRIORI 알고리즘
__24.5 APRIORI 알고리즘 예시
__24.6 APRIORI 알고리즘의 문제
__24.7 예제


25장. 군집 분석
__25.1 개요
__25.2 표기법
__25.3 k-평균 군집화
__25.4 k-평균 군집화 알고리즘
__25.5 k-평균 군집화 알고리즘 예시
__25.6 격차 통계량을 이용한 k의 선택
__25.7 격차 통계량 계산 예제
__25.8 실루엣 값을 이용한 군집의 평가
__25.9 실루엣 값 계산 예제

★ 이 책에서 다루는 내용 ★

■ 머신 러닝 구현 언어인 파이썬의 기본 구조
■ 파이썬 편집기 파이참
■ 머신 러닝 기본 패키지인 넘파이, 판다스, 맷플롯립
■ 머신 러닝 패키지인 사이킷런, 케라스
■ 범용 또는 가장 활용이 많은 머신 러닝 알고리즘
■ 알고리즘의 이해를 높이기 위한 적절한 수식 도입 및 구현
■ 알고리즘마다 적절한 예와 예제


★ 이 책의 대상 독자 ★

■ 머신 러닝에 입문하는 데 필요한 내용을 종합적으로 이해하고자 하는 독자
■ 머신 러닝에 입문했으나 좀 더 상세한 알고리즘을 알고 한 걸음 더 나아가고자 하는 독자
■ 머신 러닝을 구현 언어의 코드와 함께 이해하고자 하는 개발자
■ 머신 러닝 알고리즘을 현장에서 바로 적용하고자 하는 데이터 과학자


★ 이 책의 구성 ★

이 책은 크게 두 부분으로 구성돼 있다. 머신 러닝 언어인 파이썬 언어 및 주요 패키지에 대한 설명, 그리고 각각의 알고리즘에 관한 내용이다.
파이썬 언어와 머신 러닝 기본 패키지인 사이킷런(scikit-learn), 케라스(Keras)에 대한 이해가 있다면 바로 10장부터 시작해도 무방하다.
파이썬 언어와 패키지에서 꼭 필요하다고 생각하는 언어의 기본 구조, 넘파이(NumPy), 판다스(Pandas), 맷플롯립(matplotlib), 사이킷런, 케라스를 수록했다. 또한 각 패키지의 설명은 꼭 필요한 클래스와 메소드 위주로 설명했다. 물론 이후의 머신 러닝 알고리즘의 예제에서는 해당 장에서 다루지 않는 다른 클래스와 메소드를 사용하기도 하지만 전반적인 이해를 돕도록 하는 것에 초점을 뒀다.
10장. ‘표기법’, 11장. ‘모델 평가와 선택‘과 12장. ‘선형 회귀에 의한 머신러닝 구조에 대한 이해’는 머신 러닝 이해를 위한 개요라 할 수 있어, 꼭 숙지했으면 하며 이후 다른 장은 개별적으로 필요할 때 살펴봐도 무방하다.
머신 러닝 알고리즘 중에서 가장 많이 활용되는 로지스틱회귀, 결정 나무, 나무 기반의 앙상블 모델인 랜덤 포레스트, 그래디언트 부스팅, 서포트 벡터 머신, 다층 신경망, 합성곱 신경망, 순환 신경망을 수록했으며 비지도 학습 모델인 특이값 분해, 주성분 분석, 연관 분석 및 군집 분석을 수록했다.
각 머신 러닝 알고리즘에서는 핵심이 되는 알고리즘 구조를 수식과 함께 다루며, 이를 구현한 예제도 수록했다. 알고리즘 내용에서 너무 많은 사전 지식이 필요한 경우에는 일정 부분을 하나의 사실로 인정하고 그 이후의 내용을 다룬다. 예를 들어 "특이값 분해"에서 임의의 행렬은 무조건 UDVT로 분해되는데, 분해되는 과정부터 이를 설명하기에는 수학적인 내용의 깊이도 깊고 사전 지식이 많다. 이런 이유에서 "분해가 된다는 것"을 하나의 사실로 인정하고 이후의 내용을 진행하겠다.
신경망 기법에서는 가급적 핵심이 되는 역전파(back propagation) 또는 후진 패스 과정을 간단하나마 예제와 수식으로 설명했다.
가급적 이 한 권으로 머신 러닝의 전반적인 구조와 구현을 설명하고자 했다. 이 의도가 제대로 잘 전달됐으면 한다.

작가정보

저자(글) 강봉주

1984년 서울대 계산통계학과에 입학해 학사를 취득하고 동 대학원 통계학과에서 석사 및 박사 학위를 취득했다. 1993년, 국내 SAS에서 첫 직장 생활을 했으며 이때부터 데이터 분석 관련 컨설팅 작업을 수행했다. 1995년 유니컨설팅 회사를 창립해, 주로 제조 분야에서 데이터 분석 컨설팅 및 관련 통계 패키지를 개발했다. 1997년 유니보스를 창립해 금융 분야 데이터 분석 컨설팅 및 CRM 관련 패키지를 개발했으며, 2004년에 ㈜배닌을 창립해 오픈소스 기반의 머신 러닝 및 딥러닝 프로젝트를 수행하고 있다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    파이썬으로 실무에 바로 적용하는 머신 러닝 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    파이썬으로 실무에 바로 적용하는 머신 러닝 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    파이썬으로 실무에 바로 적용하는 머신 러닝
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)