파이토치 라이트닝으로 시작하는 딥러닝
2024년 10월 15일 출간
국내도서 : 2023년 09월 26일 출간
- eBook 상품 정보
- 파일 정보 pdf (19.93MB)
- ISBN 9791161757841
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
작품소개
이 상품이 속한 분야
1장. 파이토치 라이트닝 탐험
__파이토치 라이트닝이 특별한 이유
____딥러닝의 시작
____다양한 프레임워크
____파이토치 VS 텐서플로
____중용 - 파이토치 라이트닝
__〈pip install〉 - 라이트닝 탐험
__파이토치 라이트닝의 주요 구성요소
____딥러닝 파이프라인
____파이토치 라이트닝 추상화 계층
__파이토치 라이트닝을 활용한 AI 애플리케이션 제작
____이미지 인식 모델
____전이학습
____자연어 처리 트랜스포머 모델
____라이트닝 플래시
____LSTM을 사용한 시계열 모델
____오토인코더를 사용한 적대적 생성 네트워크
____CNN과 RNN을 결합한 준지도 학습 모델
____대조 학습을 활용한 자기 지도 학습 모델
____모델 배포 및 평가
____모델 규모 확장 및 생산성 팁
__추가 자료
__요약
2장. 첫 번째 딥러닝 모델 시작하기
__기술 요구사항
__신경망 시작하기
____왜 신경망일까?
____XOR 연산자
____MLP 아키텍처
__Hello World MLP 모델 만들기
____라이브러리 가져오기
____데이터 준비하기
____모델 설정하기
____모델 학습하기
____모델 불러오기
____예측 수행하기
__첫 번째 딥러닝 모델 구축
____모델이 깊다는 게 뭘까?
____CNN 아키텍처
__이미지 인식을 위한 CNN 모델 구축
____패키지 가져오기
____데이터 수집하기
____데이터 준비하기
____모델 구축하기
____모델 학습하기
____모델 정확도 평가하기
____모델 개선 연습
__요약
3장. 사전 학습 모델을 사용한 전이 학습
__기술 요구사항
__전이 학습 시작하기
__사전 학습한 ResNet-50 아키텍처를 사용한 이미지 분류기
____데이터 준비
____모델 생성
____모델 학습
____모델 정확도 평가
__BERT를 사용한 텍스트 분류
____데이터 수집
____데이터 로더 인스턴스 생성
____모델 생성
____모델 학습 및 테스트 설정
____모델 학습
____모델 평가
__요약
4장. 라이트닝 플래시를 통한 사전 학습 모델 활용
__기술 요구사항
__라이트닝 플래시 시작하기
__플래시는 매우 간단하다
__플래시를 이용한 비디오 분류
____Slow와 SlowFast 아키텍처
____라이브러리 가져오기
____데이터 세트 불러오기
____백본 네트워크 설정
____모델 미세 조정
____예측 수행하기
__플래시를 사용한 음성 인식
____라이브러리 설치하기
____라이브러리 가져오기
____데이터 세트 불러오기
____백본 네트워크 설정하기
____모델 학습 및 미세 조정하기
____예측 수행하기
__추가 학습
__요약
2부. 파이토치 라이트닝을 사용한 문제 해결
5장. 시계열 모델
__기술 요구사항
__시계열 소개
____딥러닝을 이용한 시계열 예측
__시계열 모델 시작하기
__LSTM 시계열 모델을 이용한 교통량 예측
____데이터 세트 분석
____피처 엔지니어링
____데이터 세트 생성
__파이토치 라이트닝을 사용한 LSTM 모델 구성
____모델 정의하기
____옵티마이저 설정하기
____모델 학습
____학습 손실 측정
____모델 불러오기
____테스트 데이터 세트 예측
____다음 단계
__요약
6장. 심층 생성 모델
__기술 요구사항
____GAN 모델 시작하기
____GAN
__GAN으로 가짜 음식 만들기
____데이터 세트 불러오기
____피처 엔지니어링 유틸리티 함수
____판별기 모델 구성
____생성기 모델 구성
____적대적 생성 모델
____GAN 모델 학습
____모델이 생성한 가짜 이미지
__GAN을 사용해 새로운 나비 종 만들기
__GAN 학습 도전 과제
__DCGAN으로 새 이미지 생성하기
__요약
7장. 준지도 학습
__기술 요구사항
__준지도 학습 시작하기
__CNN-RNN 아키텍처 알아보기
__이미지에 대한 캡션 생성하기
____데이터 세트 다운로드
____데이터 정리
____모델 학습
____하이브리드 CNN-RNN 모델
____캡션 생성
____다음 단계
__요약
8장. 자기 지도 학습
__기술 요구사항
__자기 지도 학습 시작하기
____자기 지도의 의미
__대조 학습
__SimCLR 아키텍처
____SimCLR의 작동 방식
__이미지 인식을 위한 SimCLR 모델
____데이터 세트 수집
____데이터 증강 설정
____데이터 세트 불러오기
____학습 구성
____모델 학습
____모델 평가
____다음 단계
__요약
3부. 심화 과정
9장. 모델 배포 및 예측 수행
__기술 요구사항
__파이토치 라이트닝 방식으로 모델 배포 및 예측하기
____pickle(.PKL) 모델 파일 형식
____딥러닝 모델 배포
____플라스크를 사용해 배포 및 예측하기
__ONNX 방식으로 모델 배포 및 예측하기
____ONNX 형식과 중요성
____ONNX 모델 저장 및 불러오기
____플라스크를 사용해 ONNX 모델 배포 및 예측하기
__다음 단계
__읽을거리
__요약
10장. 훈련 확장 및 관리
__기술 요구사항
__학습 관리
____모델 하이퍼파라미터 저장
____효율적인 디버깅
____텐서보드를 활용한 학습 손실 모니터링
__훈련 규모 확장
____여러 워커를 사용한 모델 학습 속도 향상
____GPU/TPU 학습
____혼합 정밀도 학습/16비트 정밀도 학습
__학습 제어
____클라우드 사용 시 모델 체크포인트 저장
____체크포인트 기능의 기본 동작 변경
____저장한 체크포인트에서 교육 재개
____클라우드에서 다운로드 또는 병합한 데이터 저장
__읽을거리
__요약
◈ 이 책에서 다루는 내용 ◈
◆ 다양한 데이터셋, 모델 아키텍처로 맞춤형 모델 제작
◆ 이미지 인식, 자연어 처리, 시계열 등 다양한 딥러닝 모델의 개념
◆ 시를 쓰고(준지도 학습) 가짜 이미지를 만드는(GAN) 심화 모델 제작
◆ 자기 지도 학습(대조 학습)을 통해 라벨이 없는 이미지를 사용한 모델 학습
◆ 사전 학습 모델의 전이 학습을 통한 비용 절감
◆ Lightning Flash를 통해 SOTA 모델 활용 방법
◆ ONNX 형식을 이용한 모델 배포와 추론
◆ 혼합 정밀도 방식과 여러 개의 GPU를 사용한 모델 학습과 추론
◈ 이 책의 대상 독자 ◈
딥러닝이 항상 궁금했지만 어디서 시작해야 할지 몰랐거나 거대한 신경망의 복잡함에 주저했던 경험이 있다면 이 책이 적합하다. 딥러닝이 식은 죽 먹기처럼 쉬워진다!
문제를 해결하기 위해 딥러닝을 배우려는 비전공 데이터 과학자를 위한 책이다. 다른 프레임워크를 사용하다가 파이토치 라이트닝으로 넘어오려고 하는 전문 데이터 과학자에게도 도움이 된다. 파이토치 라이트닝으로 딥러닝 모델을 코딩해 보려는 딥러닝 연구자에게도 실용적인 코드가 많다.
내용을 최대한 이해하려면 파이썬 프로그래밍에 대한 실무 지식과 통계학, 딥러닝 기본기에 대한 중급 수준의 이해도가 필요하다.
◈ 이 책의 구성 ◈
1장, ‘파이토치 라이트닝 탐험’에서는 딥러닝에 대한 짧은 역사로 시작해서 파이토치가 가장 사랑받는 프레임워크인 이유를 알아본다. 파이토치 라이트닝이 무엇인지, 어떻게 만들어졌는지, 파이토치와는 무엇이 다른지 살펴본다. 파이토치 라이트닝의 모듈 구조를 다루면서 파이토치 라이트닝이 모델링을 위한 엔지니어링에 드는 에너지를 줄이고 연구에 집중할 수 있게 만드는 방법을 다룬다.
2장, ‘첫 번째 딥러닝 모델 시작하기’에서는 파이토치 라이트닝으로 모델 구축을 시작하는 방법을 다룬다. 실습으로 간단한 MLP(Multilayer Perceptron) 모델부터 실제 이미지 인식에 사용하는 CNN 모델까지 만들어본다.
3장, ‘사전 학습 모델을 사용한 전이 학습’에서는 사전 학습 모델을 통해 많은 학습 시간과 비용 없이 훌륭한 성능의 모델을 만들 수 있는지 다양한 데이터 세트로 알아본다. 이미지와 자연어에 대한 사전 학습 모델을 수정하는 작업을 진행한다.
4장, ‘라이트닝 플래시를 통한 사전학습 모델 활용’에서는 최고 성능(SOTA, State-Of-The-Art) 모델 라이브러리인 파이토치 라이트닝 플래시를 다룬다. 사람들이 자주 사용하는 알고리즘과 프레임워크를 바로 사용할 수 있도록 대부분 지원해서 데이터 과학자가 빠르게 벤치마킹과 실험을 수행할 수 있도록 돕는다. 비디오 분류 모델과 음성 인식 모델을 다룬다.
5장, ‘시계열 모델’에서는 시계열 모델을 집중적으로 다룬다. 실제 사용 사례를 살펴보면서 기본부터 RNN(Recurrent Neural Networks)와 LSTM(Long Short Term Memory) 모델 같은 심화 기술까지 순차적으로 살펴본다.
6장, ‘심층 생성 모델’에서는 단계별로 존재하지 않는 이미지를 생성할 때 사용하는 GAN과 같은 생성형 딥러닝 모델의 작동과 구현을 알아본다.
7장, ‘준지도 학습’에서는 준지도 학습 모델의 작동 방법과 파이토치 라이트닝을 통한 구현 방법을 살펴본다. 또한 CNN과 RNN 모델을 함께 사용해 라벨과 이미지 캡션을 생성하는 준지도 학습 모델을 기초부터 심화까지 실습하면서 자세히 알아본다.
8장, ‘자기 지도 학습’에서는 라벨 없는 데이터로 동작하는 자기 지도 학습이라는 새로운 분야에 집중해서 자기 지도 학습 모델의 작동 방법과 파이토치 라이트닝을 통한 구현 방법을 살펴본다. 대조 학습(contrastive learning) 실습을 다루고 SimCLR 모델과 같은 기술도 알아본다.
9장, ‘모델 배포 및 예측 수행’에서는 딥러닝 모델을 그 자체로 배포하는 기술과 ONNX 같은 상호 운영 가능한 형식으로 배포하는 방법을 구체적으로 다룬다. 또 대량의 데이터로 모델 평가를 수행하는 방법을 알아본다.
10장, ‘훈련 확장 및 관리’에서는 대규모로 모델을 학습하고 관리할 때 만나는 여러 문제를 살펴본다. 자주 발생하는 문제와 그 문제를 해결하는 팁을 알아본다. 또한 실험을 세팅하는 방법, 모델 학습을 재개하고 하드웨어를 효율적으로 활용하는 방법 등을 다룬다.
◈ 지은이의 말 ◈
딥러닝은 기계를 사람처럼 만든다. 딥러닝은 기계가 비전 모델을 통해 ‘볼 수 있게’ 하고, 알렉사와 같은 음성 장치를 통해 ‘듣게 하고’, 챗봇을 통해 ‘말하게 하고’, 준지도 학습 모델을 통해 ‘쓰게’ 하며, 심지어 생성형 모델을 통해 예술가처럼 그림도 ‘그리게’ 한다.
파이토치 라이트닝을 사용하면 연구자들이 복잡성에 대한 걱정 없이 딥러닝 모델을 빠르고 쉽게 만들 수 있다. 딥러닝 프로젝트에서 모델 공식에서 구현까지 최대한의 유연성을 확보하면서 생산성을 극대화할 수 있도록 돕는 책이다.
파이토치 라이트닝으로 딥러닝 모델을 구현하는 실습과 관련된 기법을 이해하면 즉시 실무를 수행할 수 있다. 클라우드 환경에서 파이토치 라이트닝을 구성하는 방법을 알아보고 아키텍처 구성 요소를 이해하면서 다양한 산업 솔루션을 구축하기 위해 파이토치 라이트닝이 어떻게 만들어졌는지 살펴본다. 다음으로 신경망 아키텍처를 만들고 애플리케이션에 배포해보면서 프레임워크가 제공하는 기능을 넘어 자신의 요구사항에 맞춰 확장하는 방법을 알아본다. 또한 CNN(Convolutional Neural Nets)과 자연어 처리(NLP, Natural Language Processing), 시계열 데이터, 자기 지도 학습(Self-Supervised Learning), 준지도 학습(Semi-Supervised Learning), 생성적 적대 신경망(GAN, Generative Adversarial Network)과 같은 모델을 파이토치 라이트닝을 통해 만들고 학습하는 방법을 설명한다.
◈ 옮긴이의 말 ◈
파이토치 라이트닝은 코드를 구조화하고 재사용성을 높이기 위해 파이토치 사용자가 이용하는 프레임워크입니다. 사용 방법이 직관적이고 문서화가 잘 돼 있기는 하지만 사용자층에 비해 사용 방법을 소개한 책은 국내에는 물론 해외에도 거의 없습니다. 이번 기회에 파이토치 라이트닝을 소개하는 책을 번역하게 돼 기쁩니다.
원서 출간 시기와 번역서 출간 시기 사이에 파이토치와 파이토치 라이트닝의 메이저 버전이 모두 업그레이드됐습니다. 그로 인해 원서와 코드나 코드 설명이 달라지는 부분이 있었습니다. 코드를 모두 확인했지만 혹시 문제가 발생한다면 알려주시기 바랍니다.
작년 말, 호기롭게 두 권을 번역하기로 하고 드디어 그중 한 권인 『파이토치 라이트닝으로 시작하는 딥러닝』의 역자 서문을 쓰고 있습니다. 원서를 자주 읽어 번역이 어렵지 않겠다고 생각했는데 난관의 연속이었습니다. 다른 사람의 코드를 읽기는 쉽지만 직접 작성하려고 하면 라인마다 멈칫하게 되는 것처럼, 번역도 직접 하려니 몇 단어를 넘기지 못하고 막히곤 했습니다.
난관을 지나 책의 번역을 무사히 마쳤습니다. 번역 경험이 없음에도 믿고 좋은 기회를 주신 에이콘출판사에 감사드리며 특히 번역 과정에서 지속적인 도움을 주신 분들께 감사드립니다.
작가정보
(Kunal Sawarkar)
수석 데이터 과학자이자 AI 권위자로, 최근 혁신적인 제품을 개발하는 AI 빌드 랩(Build Labs)을 이끌고 있다. 과거 여러 AI 제품 연구소를 출범시켰고 제품을 폭발적으로 성장시킨 경험이 있다. 하버드대학교에서 응용통계학으로 석사 학위를 받았고 산업계와 사회에서 풀리지 않던 문제를 머신러닝(특히 딥러닝)을 활용해 풀고 있다. 머신러닝 분야에서 20개 이상의 특허와 논문을 보유하고 있다. AI를 통한 지속가능성(Sustainability)에 집중하는 엔젤 투자자이면서 자문위원으로도 활동 중이다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!