본문 바로가기

추천 검색어

실시간 인기 검색어

코딩 없이 배우는 데이터 과학

성안북스

2023년 03월 20일 출간

국내도서 : 2023년 03월 08일 출간

(개의 리뷰)
( 0%의 구매자)
eBook 상품 정보
파일 정보 pdf (35.29MB)
ISBN 9788970674322
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
  • sam 무제한 이용가능
  • sam 프리미엄 이용가능

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

작품소개

이 상품이 속한 분야

인공지능의 발전에 따라 별도의 코딩 없이 데이터를 분석하는 No Code, Low Code의 시대로 전환되어 가고 있다. 이러한 흐름에 따라 저자는 데이터 과학 분야의 전문가들이 아닌, 입문자 및 비전공자 등 일반인도 쉽고 빠르게 실무에서 바로 사용할 수 있는 데이터 분석의 새로운 방법을 이 책에 소개하였다.

제1장. [데이터 과학을 위한 체계]에서는 데이터 과학에 접근하는 방법을 소개한다. 여기서는 데이터 과학에 접근하는 다양한 관점과 이 책에서 채택하는 프레임워크에 대해 설명한다.
제2장. [데이터 과학을 위한 도구]에서는 데이터 과학에 활용 가능한 여러 도구를 소개하고, 이 책의 실습 도구인 SAS Ⓡ OnDemand for Academics에 대하여 설명한다.
제3장. [데이터 가공과 처리]에서는 획득한 데이터를 실제 분석이 가능한 데이터로 가공 및 처리하기 위한 방법에 대하여 학습한다.
제4장. [기술적 데이터 분석]에서는 데이터를 정리 및 요약하는 과정을 통해 데이터가 가진 특성을 파악하는 방법에 대해 다룬다.
제5장과 6장. [시각적 데이터 분석Ⅰ,Ⅱ]에서는 그래프나 지도와 같은 시각화 도구를 활용하여 데이터를 분석하고 그 결과를 어떤 식으로 활용하는지, 또 어떻게 이해해야 하는지에 대한 방법을 학습한다.

그간 출간된 다양한 도서들은 저자들이 아는 것을 당연히 독자들도 알고 있으리라 짐작하기 때문에 데이터 과학의 프레임워크를 설명하는 부분에 있어 인색하였다. 하지만 이 책은 프로그래밍에 대한 이해가 전혀 없는 독자들도 쉽게 이해하고, 따라할 수 있도록 특정 학문에 치우치거나 개별 방법론에 매몰되지 않고, 보다 거시적인 안목에서 데이터 과학의 프레임워크를 제공하고 있다. 따라서 데이터 과학, 프로그래밍, 인공지능 등에 관심이 있는 독자, 특히 이 분야에 관심이 있지만 사전 지식 등이 없는 독자에게 많은 도움이 될 것이다.
추천의 글
머리말

1. 데이터 과학을 위한 체계

1.1. 왜 데이터 과학인가?
1.1.1. 데이터 과학이란 무엇인가?
1.1.2. 데이터 과학자의 길
1.1.3. ‘코딩 없이’ 배우는 데이터 과학의 중요성

1.2. 데이터 과학을 위한 기본 지식
1.2.1. 데이터
1.2.2. 변수

1.3. 데이터 과학의 프레임워크
1.3.1. 이론적 배경에 따른 분류
1.3.2. 분석 목적에 따른 분류
1.3.3. 종속 변수에 따른 분류
1.3.4. 변수의 개수에 따른 분류

2. 데이터 과학을 위한 도구

2.1. 데이터 과학을 위한 도구
2.1.1. 데이터 과학을 위한 도구란?
2.1.2. 오픈 소스 소프트웨어
2.1.3. 상용 소프트웨어

2.2. 왜 SAS ODA인가?
2.2.1. SAS ODA의 서비스 제공 배경
2.2.2. SAS ODA의 채택 사유

2.3. SAS ODA 사용하기
2.3.1. 권장 시스템 환경
2.3.2. 서비스 가입하기

2.4. SAS Studio 둘러보기
2.4.1. 기본 구성
2.4.2. 작업 모드
2.4.3. 프로세스 플로우

2.5. SAS Studio 맛보기
2.5.1. 폴더 만들기
2.5.2. 라이브러리 만들기
2.5.3. 작업 및 유틸리티

3. 데이터 가공과 처리

3.1. 왜 데이터 처리가 중요한가?
3.1.1. 신뢰성 확보를 위한 도구
3.1.2. 큰 데이터를 다루기 위한 도구
3.1.3. 이 정도면 훌륭한 분석 도구
3.1.4. 예제 데이터 소개

3.2. 데이터 입력과 출력
3.2.1. 파일 업로드
3.2.2. 데이터 확인하기
3.2.3. 데이터 내보내기
3.2.4. 파일 다운로드

3.3. 데이터 처리 기본
3.3.1. 질의
3.3.2. 질의 출력
3.3.3. 칼럼 선택
3.3.4. 칼럼 필터
3.3.5. 칼럼 요약
3.3.6. 칼럼 정렬

3.4. 데이터 구조 변환
3.4.1. 테이블 조인
3.4.2. 테이블 연결
3.4.3. 데이터 전치

4. 기술적 데이터 분석

4.1. 기술적 데이터 분석이란?
4.1.1. 데이터의 소리
4.1.2. 기술적 데이터 분석의 유형
4.1.3. 기술적 데이터 분석의 필요성

4.2. 수치형 데이터 분석
4.2.1. 수치형 데이터 분석이란?
4.2.2. 위치
4.2.3. 변동성
4.2.4. 모양

4.3. 범주형 데이터 분석
4.3.1. 범주형 데이터 분석이란?
4.3.2. 일원 빈도 분석
4.3.3. 결측률 분석

4.4. 데이터 변환
4.4.1. 데이터 순위화
4.4.2. 값 재코딩
4.4.3. 범위 재코딩
4.4.4. 데이터 변환
4.4.5. 데이터 표준화

5. 시각적 데이터 분석 I

5.1. 시각적 데이터 분석
5.1.1. 시각적 데이터 분석이란?
5.1.2. 공통 작업

5.2. 1차원 그래프
5.2.1. 막대 그래프
5.2.2. 원 그래프
5.2.3. 히스토그램
5.2.4. 상자 도표

5.3. 2차원 그래프
5.3.1. 산점도
5.3.2. 열지도
5.3.3. 시계열 도표
5.3.4. 모자이크 도표

5.4. 다차원 그래프
5.4.1. 선 그래프
5.4.2. 막대-선 그래프
5.4.3. 버블 도표

6. 시각적 데이터 분석 II

6.1. 지도 그래프란?
6.1.1. 지도 그래프란?
6.1.2. 위도와 경도
6.1.3. 지도 데이터
6.1.4. 지도의 유형
6.1.5. 지도 그래프의 종류

6.2. 위치 지도
6.2.1. 위경도 데이터 생성
6.2.2. 버블 지도
6.2.3. 산점 지도
6.2.4. 시계열 지도

6.3. 지역 지도
6.3.1. 등치 지역도
6.3.2. 텍스트 지도

맺음말

인공지능의 발전이 가져온 노 코딩 분석 소프트웨어의 등장!
이제 누구든지 데이터 과학자가 될 수 있다!

인공지능의 발전과 함께 코딩은 필수가 아닌, 하나의 도구가 되어 가고 있다. 따라서 더 이상 파이썬이나 R과 같은 프로그래밍 언어의 문법을 배우면서 데이터 학습을 하는 것이 아닌, 인공지능 기술에 기반하여 잘 만들어진 도구를 이용해 데이터 과학의 프레임워크를 이해하고, 바로 실무에 데이터 분석 기법을 활용하는 것이 가능해졌다. 이 책에서는 데이터 과학을 접근함에 있어 중요한 것은 프로그래밍 언어나 개별 분석 방법론이 아님을 강조한다. 데이터 과학에서 가장 중요한 것은 사회 현상과 문제를 올바르게 이해하는 것이고, 이를 어떠한 분석 방법론을 통해 해결할지를 선택하는 것이다. 프로그래밍 언어를 코딩하거나 개별 분석 방법론을 적용하는 과정에서 문제가 발생한다면, 인터넷 또는 기존 도서들에 나와 있는 수많은 정보들을 활용하여 문제를 해결할 수가 있다. 하지만 다양한 언어를 습득하고 있어도 문제를 잘못 이해하여 엉뚱한 분석 방법론을 채택한다면, 이는 돌이킬 수 없는 실수가 되고 만다. 즉 데이터 과학을 위한 프레임워크를 정립하는 것이 다른 무엇보다도 중요하다.

이 책은 데이터 과학 입문자, 통계학 또는 컴퓨터공학 비전공자를 위한 도서이다. 컴퓨팅에 대한 이론적 기반을 보유하지 않은 학습자가 데이터 과학을 학습함에 있어 초행길의 길잡이와 같은 역할을 하고자 한다. 그러므로 이 책 한 권이면 어렵지 않게 데이터 과학을 이해할 수 있으며, 누구든지 데이터 과학자가 되어 훌륭한 의사결정을 할 수가 있을 것이다. 데이터 범람의 시대에서 새로운 데이터 과학의 세계로 출발해보자.

작가정보

저자(글) 황보현우

하나금융지주 데이터본부장 겸 하나은행 데이터&제휴투자본부장으로서 하나금융그룹의 데이터 전략을 총괄하고 있다. 또한 하나벤처스 경영전략본부장/상무로서 하나금융그룹의 벤처캐피탈 설립을 담당하였으며, 코오롱베니트 빅데이터분석팀장으로서 다수의 빅데이터, 인공지능 프로젝트를 총괄하였다. 데이터 사이언스 분야의 세계적인 전문가로 불리는 저자는 홍콩과학기술대학교(HKUST) 겸임교수이며, 연세대학교 정보대학원 겸임교수, 단국대학교 데이터지식서비스공학과 겸임교수, 한남대학교 글로벌IT경영학과 교수로서 빅데이터와 인공지능을 강의하였다.
현재 국가데이터정책위원회 산업기반분과위원, 서울특별시 빅데이터심의위원회 위원장, 경기도 빅데이터위원회 부위원장으로 빅데이터 정책을 자문하고 있다. 주요 저서로는 『감으로만 일하던 김 팀장은 어떻게 데이터 좀 아는 팀장이 되었나(2021)』, 『파이썬 데이터 과학 통계 학습(2020)』 등이 있으며, 학술 논문으로 14편의 SCI(E)급 저널 논문과 12편의 KCI급 저널 논문을 게재한 바 있다.

저자(글) 한노아

세계 1위의 데이터 분석 SW 기업인 SAS Korea에서 PSD/Advanced Analytics 부문 컨설턴트로 재직 중이다. 연세대학교 정보통계학과를 졸업하였으며, SAS Korea 제13회 분석 챔피언십에서 공기질과 호흡기 질환의 연관 관계 규명으로 롯데멤버스 제3회 L. Point Big Data Competition에서 개인화 상품 추천으로 입상하였다. SAS Korea에서 NH농협은행, 광주은행, 삼성화재, KB손해보험, 한국타이어, LG유플러스, LF, 롯데마트 등 다수의 빅데이터 분석 프로젝트를 수행하였다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    코딩 없이 배우는 데이터 과학 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    코딩 없이 배우는 데이터 과학 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    코딩 없이 배우는 데이터 과학
    저자 모두보기
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)