[epub3.0] 랭체인으로 RAG 개발하기: VectorRAG & GraphRAG
2025년 05월 24일 출간
국내도서 : 2025년 04월 25일 출간
- eBook 상품 정보
- 파일 정보 ePUB (38.83MB) | 약 19.1만 자
- ISBN 9791140713738
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

쿠폰적용가 20,880원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
1.1 RAG란 무엇인가?
___1.1.1 RAG란?
___1.1.2 RAG의 필요성
___1.1.3 RAG 핵심 원리
___1.1.4 RAG 구현 방법
1.2 VectorRAG란 무엇인가?
___1.2.1 벡터란?
___1.2.2 벡터 처리 과정
___1.2.3 벡터 저장소
___1.2.4 VectorRAG란?
___1.2.5 VectorRAG는 언제 사용하나요?
1.3 GraphRAG란 무엇인가?
___1.3.1 그래프란?
___1.3.2 GraphDB: Neo4j
___1.3.3 GraphRAG란?
___1.3.4 GraphRAG는 언제 사용하나요?
2장 OpenAI 개념과 원리 이해하기
2.1 OpenAI란?
2.2 OpenAI 모델
___2.2.1 GPT 시리즈
___2.2.2 ChatGPT
___2.2.3 DALL·E 시리즈
___2.2.4 Whisper
___2.2.5 Sora
___2.2.6 임베딩
2.3 ChatGPT의 원리
___2.3.1 트랜스포머란?
___2.3.2 트랜스포머가 등장한 이유
2.4 OpenAI 추론 모델: o3-mini
___2.4.1 추론을 해야 하는 질문
___2.4.2 정답이 확실한 질문
2.5 OpenAI 모델 사용 시 고려사항
3장 DeepSeek 개념과 원리 이해하기
3.1 DeepSeek란?
3.2 DeepSeek가 부각된 배경
3.3 DeepSeek-R1의 원리
3.4 DeepSeek 모델
3.5 DeepSeek 모델 사용 시 고려사항
4장 실습 환경 준비하기
4.1 아나콘다 설치 및 구성
___4.1.1 아나콘다 설치하기
___4.1.2 아나콘다 가상 환경 구성하기
4.2 API 키 준비하기
4.3 DeepSeek 모델 준비하기
4.4 Neo4j 설치 및 구성하기
___4.4.1 Neo4j 설치하기
___4.4.2 Neo4j 사용 방법 익히기
___4.4.3 Neo4j에서 Cypher 사용하기
5장 VectorRAG 실습: OpenAI API 사용
5.1 자동차 데이터 검색하기
5.2 웹 데이터 검색하기
5.3 PDF에서 다육이 데이터 검색하기
5.4 랭체인의 메모리 사용하기
5.5 여러 파일에서 데이터 가져와 검색하기
5.6 랭체인 & 라마인덱스 비교
5.7 VectorRAG에 부적합한 사례
6장 VectorRAG 실습: DeepSeek 모델 사용
6.1 자동차 데이터 검색하기
6.2 웹 데이터 검색하기
6.3 PDF에서 다육이 데이터 검색하기
6.4 랭체인의 메모리 사용하기
6.5 여러 파일에서 데이터 가져와 검색하기
7장 GraphRAG 실습
7.1 랭체인에서 그래프 사용하기
7.2 축구 데이터 검색하기
___7.2.1 축구 데이터 생성하기
___7.2.2 축구 데이터 검색하기
7.3 PDF 파일 불러와서 검색하기
7.4 영화 데이터 검색하기
___7.4.1 영화 데이터 생성하기
___7.4.2 영화 데이터 검색하기
7.5 자동차 데이터 검색하기
___7.5.1 자동차 데이터 생성하기
___7.5.2 자동차 데이터 검색하기
7.6 건강 데이터 검색하기
___7.6.1 건강 데이터 생성하기
___7.6.2 건강 데이터 검색하기
8장 Copilot과 GraphRAG 비교 및 RAG의 사회적 영향
8.1 Copilot에서 사용하는 그래프 기반 검색과 GraphRAG 비교
___8.1.1 Copilot에서 사용하는 검색
___8.1.2 일반적인 RAG와 Copilot 검색 비교
8.2 RAG 패러다임 이후: 다음 단계는?
___8.2.1 RAG의 한계와 발전 방향
___8.2.2 AI Agent와 강화학습
8.3 RAG의 사회적 영향
___8.3.1 신뢰성과 투명성 문제
___8.3.2 AI의 윤리적 고려 사항
___8.3.3 정책 및 규제 이슈
8.4 인간 삶의 변화
___8.4.1 업무의 변화
___8.4.2 개인 삶의 변화
찾아보기
작가정보
저자(글) 서지영 저자
마이크로소프트에서 Data & AI Specialist로 근무 중이며, 정보관리기술사와 컴퓨터시스템응용기술사로 20년 넘게 IT 분야에서 일하고 있다. 고려대학교 대학원에서 빅데이터 및 인공지능에 대한 전문적인 연구를 진행하면서 『모두의 인공지능 기초 수학』(길벗, 2020), 『딥러닝 텐서플로 교과서』(길벗, 2021), 『딥러닝 파이토치 교과서』(길벗, 2022), 『챗GPT, 거부할 수 없는 미래』(길벗, 2023) 『랭체인으로 LLM 기반의 AI 서비스 개발하기』(길벗, 2024), 『랭체인 & 랭그래프로 AI 에이전트 개발하기』(길벗, 2025) 등을 저술했다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)