본문 바로가기

추천 검색어

실시간 인기 검색어

혼자 공부하는 머신러닝+딥러닝

박해선 지음
한빛미디어

2025년 04월 07일 출간

국내도서 : 2025년 04월 07일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 PDF (34.10MB)   |  780 쪽
ISBN 9791169219273
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장
정가 : 25,600원

쿠폰적용가 23,040

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

『혼자 공부하는 머신러닝+딥러닝』 (개정판)은 머신러닝과 딥러닝의 핵심 개념을 쉽고 체계적으로 익힐 수 있도록 돕는 입문서로, 최신 AI 트렌드를 반영해 더욱 완성도를 높였다. 특히 트랜스포머와 대규모 언어 모델(LLM) 실습을 새롭게 추가하여, 최신 AI 기술이 실제로 어떻게 동작하는지 배울 수 있도록 했다.
1판에서 많은 독자의 사랑을 받았던 ‘1:1 과외하듯 배우는 설명 방식’과 ‘구글 코랩(Colab) 기반 실습’을 유지하면서, 파이토치 예제 코드를 보강했다. 또한, 각 장마다 ‘자주 하는 질문(FAQ)’ 코너를 추가해 학습자의 이해를 돕고, 실습 중 마주할 수 있는 오류나 개념적 궁금증을 쉽게 해결할 수 있도록 구성했다. 입문자가 실전에서 부딪히는 문제를 미리 경험하고 해결하는 능력을 키울 수 있어, 더욱 효과적으로 머신러닝과 딥러닝을 익힐 수 있다.
또한, 혼공 용어 노트, 저자 유튜브 강의, Q&A 커뮤니티 등 다양한 학습 지원을 제공해 혼자서도 끝까지 학습을 이어갈 수 있도록 돕는다. 최신 AI 개념을 이해하고 실습까지 제대로 해보고 싶다면, 지금 이 책을 만나보자.
Chapter 01 나의 첫 머신러닝
01-1 인공지능과 머신러닝, 딥러닝
인공지능이란
머신러닝이란
딥러닝이란
[키워드로 끝내는 핵심 포인트]
[이 책에서 배울 것]
01-2 코랩과 주피터 노트북
구글 코랩
텍스트 셀
코드 셀
노트북
[키워드로 끝내는 핵심 포인트]
[표로 정리하는 툴바와 마크다운]
[확인 문제]
01-3 마켓과 머신러닝
생선 분류 문제
첫 번째 머신러닝 프로그램
[문제해결 과정] 도미와 빙어 분류
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]
Chapter 02 데이터 다루기
02-1 훈련 세트와 테스트 세트
지도 학습과 비지도 학습
훈련 세트와 테스트 세트
샘플링 편향
넘파이
두 번째 머신러닝 프로그램
[문제해결 과정] 훈련 모델 평가
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
02-2 데이터 전처리
넘파이로 데이터 준비하기
사이킷런으로 훈련 세트와 테스트 세트 나누기
수상한 도미 한 마리
기준을 맞춰라
전처리 데이터로 모델 훈련하기
[문제해결 과정] 스케일이 다른 특성 처리
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]
Chapter 03 회귀 알고리즘과 모델 규제
03-1 k-최근접 이웃 회귀
k-최근접 이웃 회귀
데이터 준비
결정계수(R²)
과대적합 vs 과소적합
[문제해결 과정] 회귀 문제 다루기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
03-2 선형 회귀
k-최근접 이웃의 한계
선형 회귀
다항 회귀
[문제해결 과정] 선형 회귀로 훈련 세트 범위 밖의 샘플 예측
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
03-3 특성 공학과 규제
다중 회귀
데이터 준비
사이킷런의 변환기
다중 회귀 모델 훈련하기
규제
럿지 회귀
라쏘 회귀
[문제해결 과정] 모델의 과대적합을 제어하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]
Chapter 04 다양한 분류 알고리즘
04-1 로지스틱 회귀
럭키백의 확률
로지스틱 회귀
[문제해결 과정] 로지스틱 회귀로 확률 예측
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
04-2 확률적 경사 하강법
점진적인 학습
SGDClassifier
에포크와 과대/과소적합
[문제해결 과정] 점진적 학습을 위한 확률적 경사 하강법
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]
Chapter 05 트리 알고리즘
05-1 결정 트리
로지스틱 회귀로 와인 분류하기
결정 트리
[문제해결 과정] 이해하기 쉬운 결정 트리 모델
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
05-2 교차 검증과 그리드 서치
검증 세트
교차 검증
하이퍼파라미터 튜닝
[문제해결 과정] 최적의 모델을 위한 하이퍼파라미터 탐색
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
05-3 트리의 앙상블
정형 데이터와 비정형 데이터
랜덤 포레스트
엑스트라 트리
그레이디언트 부스팅
히스토그램 기반 그레이디언트 부스팅
[문제해결 과정] 앙상블 학습을 통한 성능 향상
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주 하는 질문]
Chapter 06 비지도 학습
06-1 군집 알고리즘
타깃을 모르는 비지도 학습
과일 사진 데이터 준비하기
픽셀값 분석하기
평균값과 가까운 사진 고르기
[문제해결 과정] 비슷한 샘플끼리 모으기
[키워드로 끝내는 핵심 포인트]
[확인 문제]
06-2 k-평균
k-평균 알고리즘 소개
KMeans 클래스
클러스터 중심
최적의 k 찾기
[문제 해결 과정] 과일을 자동으로 분류하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
06-3 주성분 분석
차원과 차원 축소
주성분 분석 소개
PCA 클래스
원본 데이터 재구성
설명된 분산
다른 알고리즘과 함께 사용하기
[문제해결 과정] 주성분 분석으로 차원 축소
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[자주하는 질문]

Chapter 07 딥러닝을 시작합니다
07-1 인공 신경망
패션 MNIST
로지스틱 회귀로 패션 아이템 분류하기
인공 신경망
인공 신경망으로 모델 만들기
인공 신경망으로 패션 아이템 분류하기
[문제해결 과정] 인공 신경망 모델로 성능 향상
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]

07-2 심층 신경망
2개의 층
심층 신경망 만들기
층을 추가하는 다른 방법
렐루 함수
옵티마이저
[문제해결 과정] 케라스 API를 활용한 심층 신경망
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]

07-3 신경망 모델 훈련
손실 곡선
검증 손실
드롭아웃
모델 저장과 복원
콜백
[문제해결 과정] 최상의 신경망 모델 얻기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]
Chapter 08 이미지를 위한 인공 신경망
08-1 합성곱 신경망의 구성 요소
합성곱
케라스 합성곱 층
합성곱 신경망의 전체 구조
[문제해결 과정] 합성곱 층과 풀링 층 이해하기
[키워드로 끝내는 핵심 포인트]
[확인 문제]
08-2 합성곱 신경망을 사용한 이미지 분류
패션 MNIST 데이터 불러오기
합성곱 신경망 만들기
모델 컴파일과 훈련
[문제해결 과정] 케라스 API로 합성곱 신경망 구현
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
08-3 합성곱 신경망의 시각화
가중치 시각화
함수형 API
특성 맵 시각화
[문제해결 과정] 시각화로 이해하는 합성곱 신경망
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]
Chapter 09 텍스트를 위한 인공 신경망
09-1 순차 데이터와 순환 신경망
순차 데이터
순환 신경망
셀의 가중치와 입출력
[문제해결 과정] 순환 신경망으로 순환 데이터 처리
[키워드로 끝내는 핵심 포인트]
[확인 문제]
09-2 순환 신경망으로 IMDB 리뷰 분류하기
IMDB 리뷰 데이터셋
순환 신경망 만들기
순환 신경망 훈련하기
단어 임베딩을 사용하기
[문제해결 과정] 케라스 API로 순환 신경망 구현
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
09-3 LSTM과 GRU 셀
LSTM 구조
LSTM 신경망 훈련하기
순환층에 드롭아웃 적용하기
2개의 층을 연결하기
GRU 구조
GRU 신경망 훈련하기
[문제해결 과정] LSTM과 GRU 셀로 훈련
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
[파이토치 버전 살펴보기]
[자주 하는 질문]
Chapter 10 언어 모델을 위한 신경망
10-1 어텐션 메커니즘과 트랜스포머
순환 신경망을 사용한 인코더-디코더 네트워크
어텐션 메커니즘
트랜스포머
셀프 어텐션 메커니즘
층 정규화
피드포워드 네트워크와 인코더 블록
토큰 임베딩과 위치 인코딩
디코더 블록
[키워드로 끝내는 핵심 포인트]
[확인 문제]
10-2 트랜스포머로 상품 설명 요약하기
트랜스포머 가계도
전이 학습
BART 모델 소개
BART의 인코더와 디코더
허깅페이스로 KoBART 모델 로드하기
텍스트 토큰화
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
10-3 대규모 언어 모델로 텍스트 생성하기
디코더 기반의 대규모 언어 모델
LLM 리더보드
EXAONE의 특징
EXAONE-3.5로 상품 질문에 대한 대답 생성하기
토큰 디코딩 전략
오픈AI 모델의 간략한 역사
오픈AI API 키 만들기
오픈AI API로 상품 질문에 대한 대답 생성하기
[키워드로 끝내는 핵심 포인트]
[핵심 패키지와 함수]
[확인 문제]
부록 한 발 더 나아가기 : 이 책에 대한 독자의 질문

머신러닝과 딥러닝을 한 권으로 처음부터 끝까지 배우고 싶을 때
수식 없이 직관적으로 개념을 익히고 싶을 때
혼자서도 실습하며 AI 모델을 구현해 보고 싶을 때
》 하나, ‘입문자 맞춤형 학습 설계’로 개념과 실습을 함께 익힌다!
이 책은 머신러닝과 딥러닝을 처음 배우는 학습자를 위한 맞춤형 학습 설계로 구성되었다. 개념을 쉽게 이해할 수 있도록 스토리텔링 방식의 설명과 직관적인 비유를 활용하며, 모든 실습은 구글 코랩(Colab) 환경에서 바로 실행할 수 있도록 제공한다. 또한, 개정판에서는 각 장마다 ‘자주 하는 질문(FAQ)’ 코너를 추가하여 학습자의 궁금증을 바로 해결할 수 있도록 했다.
》 둘, 최신 AI 기술까지 다루는 확장된 실습 범위!
기존의 머신러닝 및 딥러닝 개념을 탄탄히 다지는 것은 물론, 개정판에서는 트랜스포머와 대규모 언어 모델(LLM) 실습을 새롭게 추가했다. 또한, 독자 요청이 많았던 파이토치 예제 코드를 보강해, 케라스뿐만 아니라 파이토치까지 함께 익힐 수 있도록 구성했다.
》 셋, 혼자서도 끝까지 학습할 수 있도록 [용어 노트], [유튜브 강의] 등 다양한 학습 지원 제공!
책을 읽으며 학습을 이어갈 수 있도록 혼공 용어 노트, 저자 유튜브 강의, Q&A 커뮤니티, 독자 전용 오픈 채팅 등을 지원한다. 어려운 개념이 나오더라도 언제든 참고할 수 있도록 복습 자료를 제공하며, 궁금한 점은 온라인 커뮤니티에서 해결할 수 있도록 했다.
▶ 학습 사이트: https://hongong.hanbit.co.kr
》 넷, 실습과 개념을 균형 있게 익히고 싶은 모든 학습자를 위한 책!
이 책은 머신러닝과 딥러닝을 처음 배우려는 입문자, AI 실습을 통해 직접 모델을 구현해 보고 싶은 개발자, 최신 AI 기술을 익히고 싶은 실무자까지 모두에게 적합한 학습서다. 머신러닝과 딥러닝을 체계적으로 익히고 싶다면, 지금 이 책을 만나보자.

작가정보

저자(글) 박해선

기계공학을 전공했으나 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 지금은 Microsoft AI MVP와 Google AIGED로 활동하고 있고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 〈혼자 공부하는 데이터 분석 with 파이썬〉(한빛미디어, 2023), 〈챗GPT로 대화하는 기술〉(한빛미디어, 2023)을 집필했고, 〈핸즈온 머신러닝(3판)〉(한빛미디어, 2023), 〈머신 러닝 교과서: 파이토치 편〉(길벗, 2023)을 포함한 다수의 머신러닝 책을 우리말로 옮겼다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    혼자 공부하는 머신러닝+딥러닝 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    혼자 공부하는 머신러닝+딥러닝 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    혼자 공부하는 머신러닝+딥러닝
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)