쉽고 빠르게 익히는 실전 LLM
2025년 03월 31일 출간
국내도서 : 2025년 03월 31일 출간
- eBook 상품 정보
- 파일 정보 PDF (10.62MB) | 429 쪽
- ISBN 9791169219266
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 21,600원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
더욱 심화된 내용으로 돌아온 2판은 최신화된 미세 조정(Fine-tunning), 오픈 소스와 클로즈드 소스 LLM 비교 및 전략적 활용법, 데이터 형식 및 파라미터 설정법, 임베딩 최적화, 고급 프롬프트 엔지니어링, LLM 평가를 다루며 최신 트렌드에 맞춰 RAG 챗봇, 추천 시스템, 강화 학습 기반 AI 정렬(RLHF/RLAIF), 멀티모달 트랜스포머 구축까지 다룹니다. LLM의 입문서이자, 실전 가이드인 이 책을 통해 AI 기술의 선두가 되어 보세요.
CHAPTER 1 LLM의 세계로
_1.1 LLM이란?
_1.2 많이 사용되는 LLM
_1.3 LLM을 이용한 애플리케이션
_1.4 마치며
CHAPTER 2 LLM을 이용한 의미 기반 검색
_2.1 들어가는 글
_2.2 작업
_2.3 솔루션 개요
_2.4 구성 요소
_2.5 통합
_2.6 클로즈드 소스 구성 요소의 비용
_2.7 마치며
CHAPTER 3 프롬프트 엔지니어링의 첫 번째 단계
_3.1 들어가는 글
_3.2 프롬프트 엔지니어링
_3.3 여러 모델과 프롬프트 작업하기
_3.4 마치며
CHAPTER 4 AI 생태계: 조각 맞추기
_4.1 들어가는 글
_4.2 끊임없이 변화하는 클로즈드 소스 AI의 성능
_4.3 AI 추론 vs 생각
_4.4 사례 연구 1: 검색 증강 생성(RAG)
_4.5 사례 연구 2: 자동화된 AI 에이전트
_4.6 마치며
PART 2 LLM 활용법
CHAPTER 5 맞춤형 미세 조정으로 LLM 최적화하기
_5.1 들어가는 글
_5.2 미세 조정과 전이학습: 기초 안내서
_5.3 오픈AI 미세 조정 API 살펴보기
_5.4 오픈AI CLI로 맞춤형 예제 준비하기
_5.5 오픈AI CLI 설정하기
_5.6 첫 번째 미세 조정 LLM
_5.7 마치며
CHAPTER 6 고급 프롬프트 엔지니어링
_6.1 들어가는 글
_6.2 프롬프트 인젝션 공격
_6.3 입력/출력 유효성 검사
_6.4 배치 프롬프팅
_6.5 프롬프트 체이닝
_6.6 사례 연구: AI는 수학을 얼마나 잘하나?
_6.7 마치며
CHAPTER 7 임베딩과 모델 아키텍처 맞춤화
_7.1 들어가는 글
_7.2 사례 연구: 추천 시스템 만들기
_7.3 마치며
CHAPTER 8 AI 정렬: 제1원리
_8.1 들어가는 글
_8.2 누구에게, 그리고 어떤 목적에 맞춰 정렬할 것인가?
_8.3 편향 완화 도구로서의 정렬
_8.4 정렬의 핵심 원칙
_8.5 헌법 AI: 자기 정렬을 향한 한 걸음
_8.6 마치며
PART 3 고급 LLM 사용법
CHAPTER 9 파운데이션 모델을 넘어서
_9.1 들어가는 글
_9.2 사례 연구: VQA
_9.3 사례 연구: 피드백 기반 강화 학습
_9.4 마치며
CHAPTER 10 고급 오픈 소스 LLM 미세 조정
_10.1 들어가는 글
_10.2 예시: BERT를 이용한 애니메이션 장르 다중 레이블 분류
_10.3 예시: GPT-2를 이용한 LaTeX 생성
_10.4 시난의 현명하면서도 매력적인 답변 생성기: SAWYER
_10.5 마치며
CHAPTER 11 LLM을 프로덕션 환경에서 사용하기
_11.1 들어가는 글
_11.2 클로즈드 소스 LLM을 프로덕션 환경에 배포하기
_11.3 프로덕션 환경에 오픈 소스 LLM 배포하기
_11.4 마치며
CHAPTER 12 LLM 평가하기
_12.1 들어가는 글
_12.2 생성 작업 평가하기
_12.3 이해 과제 평가하기
_12.4 마치며
_12.5 계속 나아가세요!
PART 4 부록
APPENDIX A LLM 자주 묻는 질문(FAQ)
APPENDIX B LLM 용어 해설
APPENDIX C LLM 애플리케이션 개발 고려사항
더 강력하게 돌아왔다! LLM 완성형 가이드의 개정판
AI 에이전트, RAG 챗봇부터 그록, 데빈 사례까지!
최신 AI 트렌드와 기술을 반영하여 한층 업그레이드된 『쉽고 빠르게 익히는 실전 LLM』이 여러분을 다시 찾아왔습니다! LLM이 다양한 산업에서 필수적인 도구로 자리 잡은 지금, 이 책은 LLM을 처음 접하는 이들에게 개념과 활용법을 쉽고 명확하게 전달하며 실무에 바로 적용할 수 있도록 돕는 실전 가이드입니다.
이번 2판에서는 LLM 개발의 기초부터 최적화, 배포까지의 모든 과정을 단계별로 설명하고, 최신 트렌드에 맞춘 미세 조정, 임베딩 최적화, 프롬프트 엔지니어링 등을 심층적으로 다룹니다. 또한, RAG 챗봇, AI 에이전트 사례 연구와 함께, 그록, 데빈 등의 최신 사례를 추가하여 한층 더 풍부한 내용을 제공합니다. LLM을 활용한 서비스 개발을 계획하거나 최신 AI 트렌드와 실전 적용법을 익히고자 한다면, 이 책이 최고의 선택이 될 것입니다. 이 책의 심화 지식과 실전 팁을 통해 LLM의 진정한 잠재력을 발휘하세요!
주요 내용
● 사전 훈련, 미세 조정, 어텐션 등 LLM 주요 개념
● API 및 파이썬을 활용한 LLM 맞춤화와 최적화
● RAG 챗봇 및 AI 에이전트 구축
● 연쇄적 사고, 의미 기반 퓨샷 프롬프트 등 고급 프롬프트 엔지니어링
● 사용자 데이터를 활용한 임베딩 맞춤화 및 추천 시스템 개발
● 오픈 소스 LLM과 대규모 시각 데이터셋을 활용한 멀티모달 AI 모델 구축
● RLHF/RLAIF를 통한 LLM 정렬 및 대화형 AI 최적화
● 양자화, 벤치마킹, 평가 프레임워크를 활용한 성능 최적화
작가정보
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)