본문 바로가기

추천 검색어

실시간 인기 검색어

대규모 머신러닝 시스템 디자인 패턴

위안 탕 지음 | 정민정 옮김
한빛미디어

2024년 12월 02일 출간

국내도서 : 2024년 11월 29일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 PDF (5.61MB)   |  305 쪽
ISBN 9791169218832
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장
정가 : 24,000원

쿠폰적용가 21,600

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

머신러닝의 급속한 발전과 함께 데이터와 트래픽이 폭발적으로 증가하면서, 단순히 성능 향상뿐 아니라 안정적이고 확장 가능한 시스템 설계가 중요해지고 있다. 이에 본 책은 대규모 머신러닝 시스템을 설계하고 운영하기 위한 14가지 실용적인 설계 패턴을 소개하고, 실무에서 빈번히 발생하는 문제와 해결책을 제시한다. 또한 텐서플로, 쿠버네티스, 쿠브플로, 아르고 워크플로 등 클라우드 기반의 최신 도구를 활용한 실무 예제를 통해 이론과 실무를 함께 학습할 수 있도록 구성했다. 특히 시스템 장애나 과부하 상황에서의 대처 방안, 효율적인 자원 관리를 상세히 다룸으로써 실무자들의 기술적 문제 해결 역량을 높이는 데 중점을 두었다. 복잡해지는 머신러닝 시스템의 난관을 뚫고 나아가려는 모든 개발자에게 이 한 권이 길잡이가 될 것이다.

14가지 패턴
● 데이터 수집 패턴: 배치 처리, 샤딩, 캐싱
● 분산 학습 패턴: 파라미터 서버, 집합 통신, 탄력성 및 내결함성
● 모델 서빙 패턴: 레플리카 서버, 서비스 샤딩, 이벤트 기반 처리
● 워크플로 패턴: 팬인 및 팬아웃, 동기 및 비동기, 스텝 메모이제이션
● 운영 패턴: 스케줄링, 메타데이터
[PART 1 분산 머신러닝 시스템의 배경지식]
CHAPTER 01 분산 머신러닝 시스템 소개
_1.1 대규모 머신러닝
_1.2 분산 시스템
_1.3 분산 머신러닝 시스템
요약

[PART 2 분산 머신러닝 시스템의 설계 패턴]
CHAPTER 02 데이터 수집 패턴
_2.1 데이터 수집이란?
_2.2 Fashion-MNIST 데이터셋
_2.3 배치 처리 패턴: 제한된 메모리로 무거운 연산 실행하기
_2.4 샤딩 패턴: 매우 큰 데이터셋을 여러 워커에 분산시키기
_2.5 캐싱 패턴: 효율적인 학습을 위해 데이터 재활용하기
요약

CHAPTER 03 분산 학습 패턴
_3.1 분산 학습이란?
_3.2 파라미터 서버 패턴: 8백만 개의 유튜브 영상에 태그 달기
_3.3 집합 통신 패턴: 파라미터 서버가 병목이 되지 않도록 개선하기
_3.4 탄력성 및 내결함성 패턴: 제한된 연산 자원으로 인한 실패 대응하기
요약

CHAPTER 04 모델 서빙 패턴
_4.1 모델 서빙이란?
_4.2 레플리카 서버 패턴: 늘어나는 요청량 처리하기
_4.3 서비스 샤딩 패턴: 고해상도 영상을 처리하는 대규모 모델 서빙 다루기
_4.4 이벤트 기반 처리 패턴: 이벤트 기반으로 모델 서빙하기
요약

CHAPTER 05 워크플로 패턴
_5.1 워크플로란?
_5.2 팬인 및 팬아웃 패턴: 복잡한 머신러닝 워크플로 체계화
_5.3 동기 및 비동기 패턴: 병렬성으로 더 빠르게 처리하기
_5.4 스텝 메모이제이션 패턴: 반복되는 작업 생략하기
요약

CHAPTER 06 운영 패턴
_6.1 머신러닝 시스템 운영하기
_6.2 스케줄링 패턴: 공유 클러스터 자원을 효과적으로 할당하기
_6.3 메타데이터 패턴: 실패를 적절히 처리하는 방법
요약

[PART 03 분산 머신러닝 시스템 구축]
CHAPTER 07 실습 프로젝트 둘러보기
_7.1 프로젝트 개요
_7.2 데이터 수집 단계
_7.3 모델 학습 단계
_7.4 모델 서빙 단계
_7.5 전체 워크플로 구조
요약

CHAPTER 08 실습 관련 기술 둘러보기
_8.1 텐서플로: 머신러닝 프레임워크
_8.2 쿠버네티스: 분산 컨테이너 관리 시스템
_8.3 쿠브플로: 쿠버네티스 머신러닝 워크로드 관리 시스템
_8.4 아르고 워크플로: 컨테이너 기반 워크플로 엔진
요약

CHAPTER 09 실습 프로젝트
_9.1 데이터 수집
_9.2 모델 학습
_9.3 모델 서빙
_9.4 전체 워크플로
요약

대규모 데이터 처리와 분석을 위한 분산 머신러닝 실무 가이드

이 책은 분산 시스템에서 머신러닝을 구현하고 최적화하는 데 필요한 14가지 핵심 패턴과 모범 사례를 소개하는 실무 지침서다. 복잡한 분산 머신러닝 개념을 쉽게 이해할 수 있도록 설명하고, 실무에서 바로 적용할 수 있는 실질적인 방법론을 제시한다. 데이터 분산 처리, 모델 학습의 병렬화, 효율적인 리소스 관리 등 분산 머신러닝의 전반적인 과정에서 발생할 수 있는 다양한 문제를 해결하기 위한 체계적인 패턴을 소개한다. 이를 통해 AI와 데이터 과학 분야의 전문가들뿐만 아니라, 대규모 데이터 처리 및 분석을 다루는 모든 이에게 실용적인 가이드가 될 것이다.

주요 내용
● 데이터 수집, 분산 학습, 모델 서빙 등 다양한 단계로 구성된 ML 파이프라인 구축
● 쿠버네티스, 텐서플로, 쿠브플로, 아르고 워크플로를 사용해 ML 작업 자동화
● 다양한 패턴과 접근 방식 간의 트레이드오프 평가
● 대규모 머신러닝 작업 관리 및 모니터링

작가정보

저자(글) 위안 탕

(Yuan Tang)
Akuity의 창립 엔지니어로, 개발자를 위한 기업용 플랫폼을 구축하고 있다. 이전에 알리바바와 Uptake에서 데이터 과학 및 엔지니어링팀을 이끌며 AI 인프라와 AutoML 플랫폼 개발에 주력했다. 아르고(Argo)와 쿠브플로(Kubeflow)의 프로젝트 리더이자 텐서플로(TensorFlow)와 XGBoost의 메인테이너로 활동 중이며, 이 외에도 다양한 오픈 소스 프로젝트를 만들어 운영 중이다. 세 권의 머신러닝 서적을 집필하고 여러 논문을 발표했다. 다양한 콘퍼런스에서 정기적으로 다양한 발표를 정기적으로 진행하고 있으며, 여러 조직에서 기술 자문과 리더, 멘토 역할을 수행하고 있다.

국내 주요 IT 기업에서 머신러닝 엔지니어로 활동하며 대규모 실시간 추론 시스템을 설계 및 운영하고 있다. 컴퓨터 비전과 자연어 처리를 중심으로 다양한 도메인의 머신러닝 모델을 실제 서비스에 적용해왔으며, 현재는 머신러닝 서비스팀을 이끌고 있다. 확장 가능하면서도 안정적인 시스템을 구축하는 데 주력하고 있으며, 실용적인 머신러닝 엔지니어링 문화를 전파하는 데 힘쓰고 있다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    대규모 머신러닝 시스템 디자인 패턴 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    대규모 머신러닝 시스템 디자인 패턴 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    대규모 머신러닝 시스템 디자인 패턴
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)