그래프 머신러닝
2024년 10월 14일 출간
국내도서 : 2023년 01월 31일 출간
- eBook 상품 정보
- 파일 정보 pdf (18.87MB)
- ISBN 9791161758848
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 25,200원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
2부.
1장. 그래프 시작하기
__기술적 필요 사항
__networkx로 그래프 이해하기
____그래프의 종류
____그래프 표현
__그래프 플로팅
____networkx
____Gephi
__그래프 속성
____통합 측정 지표
____분리 측정 지표
____중심성 측정 지표
____탄력성 측정 지표
__벤치마크 및 저장소
____간단한 그래프의 예
____그래프 생성 모델
____벤치마크
__큰 그래프 다루기
__요약
2장. 그래프 머신러닝
__기술적 필요 사항
__그래프 머신러닝 이해하기
____머신러닝의 기본 원리
____그래프 머신러닝의 이점
__일반화된 그래프 임베딩 문제
__그래프 임베딩 머신러닝 알고리듬의 분류
____임베딩 알고리듬의 분류
__요약
2부. 그래프에서의 머신러닝
3장. 비지도 그래프 학습
__기술적 필요 사항
__비지도 그래프 임베딩 로드맵
__얕은 임베딩 방법
____행렬 분해
____그래프 분해
____고차 근접 보존 임베딩
____전역 구조 정보를 통한 그래프 표현
____skip-gram
____DeepWalk
____Node2Vec
____Edge2Vec
____Graph2Vec
__오토인코더
____텐서플로와 케라스-강력한 조합
____첫 번째 오토인코더
____노이즈 제거 오토인코더
____그래프 오토인코더
__그래프 신경망
____GNN의 변형
____스펙트럼 그래프 합성곱
____공간 그래프 합성곱
____예제로 보는 그래프 합성곱
__요약
4장. 지도 그래프 학습
__기술적 필요 사항
__지도 그래프 임베딩 로드맵
__특징 기반 방법
__얕은 임베딩 방법
____라벨 전파 알고리듬
____라벨 확산 알고리듬
__그래프 정규화 방법
____매니폴드 정규화 및 준지도 임베딩
____신경 그래프 학습
____Planetoid
__Graph CNN
____GCN을 이용한 그래프 분류
____GraphSAGE를 이용한 노드 분류
__요약
5장. 그래프에서의 머신러닝 문제
__기술적 필요 사항
__그래프에서 누락된 링크 예측
____유사성 기반 방법
____임베딩 기반 방법
__커뮤니티와 같은 의미 있는 구조 감지
____임베딩 기반 커뮤니티 감지
____스펙트럼 방법 및 행렬 분해
____확률 모델
____비용 함수 최소화
__그래프 유사성 및 그래프 매칭 감지
____그래프 임베딩 기반 방법
____그래프 커널 기반 방법
____GNN 기반 방법
____응용
__요약
3부. 그래프 머신러닝의 고급 응용
6장. 소셜 네트워크 그래프
__기술적 필요 사항
__데이터셋 개요
____데이터셋 다운로드
____networkx로 데이터셋 불러오기
__네트워크 토폴로지 및 커뮤니티 감지
____토폴로지 개요
____노드 중심성
____커뮤니티 감지
__지도 및 비지도 임베딩
____작업 준비
____node2vec 기반 링크 예측
____GraphSAGE 기반 링크 예측
____링크 예측을 위한 수작업 특징
____결과 요약
__요약
7장. 그래프를 이용한 텍스트 분석 및 자연어 처리
__기술적 필요 사항
__데이터셋 개요
__자연어 처리에서 사용되는 주요 개념 및 도구 이해
__문서 모음에서 그래프 만들기
____지식 그래프
____이분 문서/개체 그래프
__문서 주제 분류기 구축
____얕은 학습 방법
____그래프 신경망
__요약
8장. 신용카드 거래에 대한 그래프 분석
__기술적 필요 사항
__데이터셋 개요
____데이터셋 불러오기 및 networkx 그래프 구축
__네트워크 토폴로지 및 커뮤니티 감지
____네트워크 토폴로지
____커뮤니티 감지
__사기 탐지를 위한 지도 및 비지도 임베딩
____사기 거래 식별에 대한 지도 학습 접근 방식
____사기 거래 식별에 대한 비지도 학습 접근 방식
__요약
9장. 데이터 드리븐 그래프 기반 응용 프로그램 구축
__기술적 필요 사항
__람다 아키텍처 개요
__그래프 기반 응용 프로그램을 위한 람다 아키텍처
____그래프 처리 엔진
____그래프 쿼리 레이어
____Neo4j와 GraphX 선택
__요약
10장. 그래프의 새로운 트렌드
__그래프의 데이터 증대에 대해 알아보기
____샘플링 전략
____데이터 증강 기술 살펴보기
__토폴로지 데이터 분석에 대해 배우기
____토폴로지 머신러닝
__새로운 영역에 그래프 이론 적용하기
____그래프 머신러닝 및 신경 과학
____그래프 이론 및 화학 및 생물학
____그래프 머신러닝 및 컴퓨터 비전
__추천 시스템
__요약
◈ 이 책의 대상 독자 ◈
이 책은 데이터 포인트를 풀고, 위상(topology) 정보를 활용해 분석과 모델의 성능을 개선하려는 데이터 분석가, 그래프 개발자, 그래프 분석가, 그래프 전문가를 대상으로 한다. 머신러닝 기반 그래프 데이터베이스를 구축하려는 데이터 과학자와 머신러닝 개발자에게도 유용하다. 그래프 데이터베이스와 그래프 데이터에 대한 초급 수준의 지식을 가지고 있는 사람이 읽기에 적합한 책이다. 이 책의 내용을 최대한 활용하기 위해서는 파이썬 프로그래밍과 머신러닝에 대한 중급 수준의 실무 지식 또한 필요하다.
◈ 이 책의 구성 ◈
1장, '그래프 시작하기’에서는 NetworkX 파이썬 라이브러리를 사용해 그래프 이론의 기본 개념을 소개한다.
2장, ‘그래프 머신러닝’에서는 그래프 머신러닝과 그래프 임베딩 기술의 주요 개념을 소개한다.
3장, ‘그래프 비지도 학습’에서는 비지도 그래프 임베딩의 최신 방법을 다룬다.
4장, ‘그래프 지도 학습’에서는 지도 그래프 임베딩의 최신 방법을 다룬다.
5장, ‘그래프에서의 머신러닝 문제’에서는 그래프에서 가장 일반적인 머신러닝 작업을 소개한다.
6장, ‘소셜 네트워크 그래프’에서는 분석 소셜 네트워크 데이터에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
7장, ‘그래프를 사용한 텍스트 분석 및 자연어 처리’에서는 자연어 처리 작업에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
8장, ‘신용카드 거래에 대한 그래프 분석’에서는 신용카드 부정 거래 탐지에 머신러닝 알고리듬을 적용하는 방법을 소개한다.
9장, ‘데이터 드리븐 그래프 기반 응용 프로그램 구축’에서는 큰 그래프를 처리하는 데 유용한 몇 가지 기술을 소개한다.
10장, ‘그래프의 새로운 트랜드’에서는 그래프 머신러닝의 몇 가지 새로운 동향(알고리듬과 응용 프로그램)을 소개한다.
◈ 옮긴이의 말 ◈
처음 접하는 이들에게는 그래프 데이터가 어렵게 느껴질 수 있다. 하지만 그래프 데이터는 우리의 일상과 친숙해질 수 있는 데이터 형식이다. 사회는 복잡한 관계의 연속으로 구성되는데, 노드와 간선으로 표현되는 그래프 데이터는 이러한 관계의 표현을 가장 잘 나타낼 수 있는 데이터 형식이다. 관계 표현을 가장 쉽게 할 수 있다는 강점이 있어 최근에는 그래프 형식으로 데이터를 저장하는 데이터베이스 등이 각광받고 있다.
이 책은 그래프 데이터를 다루기 위한 아주 기본적인 것들로 시작해서, 실생활에 적용할 수 있는 예시를 통해 보다 쉬운 이해를 제공한다. 예시를 통해서 그래프 데이터를 다루는 기본기를 쌓고, 머신 러닝 알고리즘들을 활용해 고급 응용 스킬들을 배워볼 수 있다. 단순히 이론적인 설명에서 끝나는 것이 아니라 실제 서비스에 필요한 기본 지식들을 소개한다는 점에서 훌륭한 책이다. 물론 나와있는 내용만으로 그래프 머신 러닝 전문가가 될 수 있다고는 할 수 없을 것이다. 그러나 훌륭한 시작을 함께하기 위해 좋은 책이라고 생각한다.
이 책에서는 보다 복잡한 설명이나 심도 있는 이해가 필요한 부분에 참고할 만한 자료들에 대한 소개가 나와있다. 이러한 참고 자료들을 찾아보고 스스로 새로운 문제를 해결하기 위해 노력해보기를 꼭 권장한다. 이러한 노력이 인공지능 연구의 선도자가 되는 길이라고 생각한다.
작가정보
저자(글) 클라우디오 스타밀레
(Claudio Stamile)
2013년 9월 이탈리아 칼라브리아 대학(University of Calabria)에서 컴퓨터 공학 석사 학위를 받았으며, 2017년 9월 벨기에 뢰번 가톨릭 대학(KU Leuven) 및 프랑스 끌로드 베흐노리용 1 대학(Université Claude Bernard Lyon 1)에서 공동 박사 학위를 받았다. 석박사 학위 과정 동안 생물 의학 분야를 전공하면서 인공지능, 그래프 이론, 머신러닝에 관해 탄탄한 배경 지식을 쌓았다. 현재 최상위 고객이 데이터 기반 전략을 구현하고 인공지능 기반 솔루션을 구축해 효율성을 높이고 새로운 비즈니스 모델을 수행하도록 지원하는 컨설팅 회사인 CGnal의 선임 데이터 과학자다.
(Aldo Marzullo)
2016년 9월 칼라브리아 대학에서 컴퓨터과학 석사 학위를 받았다. 알고리듬 설계와 그래프 이론, 그리고 머신러닝을 포함한 여러 분야에서 견고한 배경 지식을 쌓았다. 2020년 1월 칼라브리아 대학과 끌로드 베흐노 리용 1(프랑스 리용) 대학에서 「Deep Learning and Graph Th eory for Brain Connectivity Analysis in Multiple Sclerosis(다발성 경화증 뇌 연결성 분석을 위한 딥러닝과 그래프 이론)」이라는 논문으로 공동 박사 학위를 받았다. 알도는 현재 칼라브리아 대학의 박사후 연구원으로 여러 국제기관과 협력하고 있다.
(Enrico Deusebio)
현재 최고 수준의 고객이 데이터 기반 전략을 구현하고 인공지능 기반 솔루션을 구축하는 것을 지원하는 컨설팅 회사인 CGnal의 최고 운영 책임자다. 학문적, 산업적 맥락에서 10년 이상 고성능 시설과 대규모 컴퓨팅 센터를 사용해 데이터와 대규모 시뮬레이션을 연구해 왔다. 케임브리지 대학(University of Cambridge), 토리노 대학(University of Turin), 스톡홀름 왕립기술원(KTH) 등 최상위권 대학과 협력해 박사학위를 취득했다. 또한 2014년 토리노 폴리테크닉(Politecnico di Torino)의 항공 우주 공학 학사 및 석사 학위를 받았다.
경희대학교에서 대수학을 전공했으며, 고려대학교 정보보호대학원에서 박사 학위를 취득했다. 이후 약 10년간 경찰청 사이버안전국 디지털포렌식센터에서 디지털 포렌식 업무를 담당했다. 경찰대학 치안정책연구소에서 데이터 분석을 접한 이후 데이터 분석을 기반으로 한 머신러닝 기술을 연구했으며, 이 경험을 바탕으로 현재 아이브스 CTO 및 AI LAB 연구소장으로 딥러닝 기반 영상 및 음향ㆍ음성 보안 솔루션과 데이터 분석 플랫폼 개발 및 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003)와 『EnCase 컴퓨터 포렌식』(에이콘, 2015), 『인텔리전스 기반 사고 대응』(에이콘, 2019), 『적대적 머신러닝』(에이콘, 2020), 『사이버 보안을 위한 머신러닝 쿡북』(에이콘, 2021), 『양자 암호 시스템의 시작』(에이콘, 2021), 『스크래치로 배워보자! 머신러닝』(에이콘, 2022), 『Pandas를 이용한 데이터 분석 실습 2/e』(에이콘, 2022)이 있다.
작가의 말
그래프 머신러닝은 네트워크 데이터를 처리하고 예측, 모델링, 분석 작업에 사용할 수 있는 개체 간의 강력한 관계를 활용할 수 있는 새로운 도구를 제공한다.
그래프 이론과 그래프 머신러닝을 간단하게 소개하고, 그래프의 잠재력을 이해하는 방법을 배운다. 이어서 그래프 표현 학습을 위한 주요 머신러닝 모델, 즉 목적과 작동 방식, 다양한 지도 학습과 비지도 학습 응용 프로그램에서 구현하는 방법을 익힌다. 그런 다음 그래프 데이터의 잠재력을 최대한 활용하고자 데이터 처리부터 모델 학습 그리고 예측을 포함한 완전한 머신러닝 파이프라인을 구축한다. 계속해서 소셜 네트워크 데이터를 수집하고, 텍스트 분석과 금융 거래 시스템, 자연어 처리와 같은 실제 시나리오를 다룬다. 마지막으로 네트워크 정보를 저장하고, 질의하고 처리하기 위한 그래프 분석용 데이터 기반 응용 프로그램을 구축하고 확장하는 방법을 배운 다음, 그래프의 최신 동향을 알아본다.
이 책을 통해 그래프 이론의 필수 개념과 머신러닝 응용 프로그램을 성공적으로 구축하는 데 사용되는 모든 알고리듬과 기술을 배울 수 있을 것이다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)