R을 활용한 머신러닝
2024년 10월 14일 출간
국내도서 : 2024년 01월 24일 출간
- eBook 상품 정보
- 파일 정보 pdf (23.91MB)
- ISBN 9791161758886
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 34,560원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
1장은 머신러닝의 전체 개념을 설명해 주고, 2장부터 9장까지는 최근접 이웃, 나이브 베이즈, 회귀기법, 결정 트리, 랜덤 포레스트, 서포트 벡터 머신, 연관 규칙을 사용한 시장 바스켓 분석, 신경망, K-평균화를 사용한 군집화 등 머신러닝에서 보편적으로 사용되는 반드시 알아야 하는 여러 개념들을 자세히 그러나 비유를 통해 친절하게 설명하고 있다.
모든 장에서 설명한 개념을 실제로 수행해 볼 수 있는 예제가 R로 제공되며, 심화학습을 위한 참고 도서를 알려 준다.
한편 각종 예제는 3판에 비해 예제 자체가 신설 혹은 보강되거나 설명이 대폭 보강됐다.
10장은 특히 모델의 성능을 평가하는 여러 방법과 그 장단점을 설명하며 구축된 모델을 현업에 배포하는 것이 적절한지에 대해 이야기한다.
11장부터는 모델을 실세계에 배포하기 위해 고려해야 하는 여러 사항과 함께 데이터를 준비하고 그 무결성 여부에 따라 처리해야 하는 여러 기법을 설명한다.
특히 15장에서는 빅데이터란 무엇인지 빅데이터를 다룰 때 발생할 수 있는 여러 고려 사항들과 함께 그를 극복하기 위해서는 어떤 점을 유념해야 하는지에 대해 다루고 있다.
__머신러닝의 기원
__머신러닝의 사용과 남용
____머신러닝 성공 사례
____머신러닝의 한계
____머신러닝의 윤리
__기계의 학습 방법
____데이터 저장소
____추상화
____일반화
____평가
__실전 머신러닝
____입력 데이터 타입
____머신러닝 알고리듬 형식
____입력 데이터와 알고리듬 매칭
__R을 이용한 머신러닝
____R 패키지 설치
____패키지 로딩과 언로딩
____RStudio 설치
____왜 R인가 왜 지금 R인가?
__요약
02장. 데이터의 관리와 이해
__R 데이터 구조
____벡터
____팩터
____리스트
____데이터 프레임
____행렬과 배열
__R을 이용한 데이터 관리
____데이터 구조 저장, 로드, 제거
____CSV 파일에서 데이터 가져오기와 저장하기
____Rstudio를 이용한 일반적 데이터 세트 형식 가져오기
__데이터 탐색과 이해
____데이터 구조 탐색
____수치 변수 탐색
______중심 경향 측정: 평균과 중앙값
______퍼짐 측정: 사분위수와 다섯 숫자 요약
______수치 변수 시각화: 상자그림
______수치 변수 시각화: 히스토그램
______수치 데이터의 이해: 균등 분포와 정규 분포
______퍼짐 측정: 분산과 표준 편차
____범주 특징 탐색
______중심 경향 측정: 최빈값
____특징 간의 관계 탐색
______관계 시각화: 산포도
______관계 관찰: 이원교차표
__요약
03장. 게으른 학습: 최근접 이웃을 사용한 분류
__최근접 이웃 분류의 이해
____k-NN 알고리듬
______거리로 유사도 측정
______적절한 k 선택
______k-NN 사용을 위한 데이터 준비
____k-NN 알고리듬이 게으른 이유
__예제: k-NN 알고리듬으로 유방암 진단
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______변환: 수치 데이터 정규화
______데이터 준비: 훈련 및 테스트 데이터 세트 생성
____단계 3: 데이터로 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
______변환: z-점수 표준화
______K의 대체 값 테스트
__요약
04장. 확률적 학습: 나이브 베이즈 분류
__나이브 베이즈 이해
____베이지안 기법의 기본 개념
______확률의 이해
______결합 확률의 이해
______베이즈 정리를 이용한 조건부 확률 계산
____나이브 베이즈 알고리듬
______나이브 베이즈를 이용한 분류
______라플라스 추정량
______나이브 베이즈에서 수치 특성 이용
__예제: 나이브 베이즈 알고리듬을 이용한 휴대폰 스팸 필터링
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______데이터 준비: 텍스트 데이터 정리와 표준화
______데이터 준비: 텍스트 문서를 단어로 나누기
______데이터 준비: 훈련 및 테스트 데이터 세트 생성
______텍스트 데이터 시각화: 단어 구름
______데이터 준비: 자주 사용하는 단어의 지시자 특징 생성
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
__요약
05장. 분할 정복: 의사결정 트리와 규칙 기반의 분류
__의사결정 트리의 이해
____분할 정복
____C5.0 의사결정 트리 알고리듬
______최고의 분할 선택
______의사결정 트리 가지치기
__예제: C5.0 의사결정 트리를 이용한 위험 은행 대출 식별
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______데이터 준비: 랜덤한 훈련 및 테스트 데이터 세트 생성
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
____의사결정 트리의 정확도 향상
____더 비싼 실수
__분류 규칙 이해
____분리 정복
____1R 알고리듬
____리퍼 알고리듬
____의사결정 트리에서 규칙 구성
____무엇이 트리와 규칙을 탐욕스럽게 만드는가?
__예제: 규칙 학습자를 이용한 독버섯 식별
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
__요약
06장. 수치 데이터 예측: 회귀 방법
__회귀의 이해
____단순 선형 회귀
____일반 최소 제곱 추정
____상관관계
____다중 선형 회귀
____일반화 선형 모델과 로지스틱 회귀
__예제: 선형 회귀를 사용한 자동차 보험금 청구 예측
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______특징 간의 관계 탐색: 상관관계 행렬
______특징 간 관계 시각화: 산포도 행렬
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
______모델 명시: 비선형 관계 추가
______모델 명시: 상호작용 영향 추가
______모두 합치기: 개선된 회귀 모델
______회귀 모델로 예측하기
______심화: 로지스틱 회귀를 사용해 보험 가입자 이탈 예측하기
__회귀 트리와 모델 트리의 이해
____트리에 회귀 추가
__예제: 회귀 트리와 모델 트리로 와인 품질 평가
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
____단계 3: 데이터에 대한 모델 훈련
______의사결정 트리 시각화
____단계 4: 모델 성능 평가
______평균 절대 오차로 성능 측정
____단계 5: 모델 성능 개선
__요약
07장. 블랙박스 방법: 신경망과 서포트 벡터 머신
__신경망의 이해
____생물학적 뉴런에서 인공 뉴런으로
____활성 함수
____네트워크 토폴로지
______계층 수
______정보 이동 방향
______계층별 노드 개수
____역전파로 신경망 훈련
__예제: ANN으로 콘크리트 강도 모델링
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
____단계 3: 데이터 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
__서포트 벡터 머신의 이해
____초평면을 이용한 분류
______선형적으로 분리 가능한 데이터의 경우
______비선형적으로 분리 가능한 데이터의 경우
____비선형 공간을 위한 커널의 사용
__예제: SVM으로 OCR 수행
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 향상
______SVM 커널 함수 변경
______최적 SVM 비용 파라미터 알아내기
__요약
08장. 패턴 찾기: 연관 규칙을 이용한 장바구니 분석
__연관 규칙의 이해
____연관 규칙 학습을 위한 아프리오리 알고리듬
____규칙 흥미 측정: 지지도와 신뢰도
____아프리오리 원칙을 이용한 규칙 집합의 구축
__예제: 연관 규칙으로 자주 구매되는 식료품 식별
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______데이터 준비: 거래 데이터를 위한 희소 행렬 생성
______아이템 지지도 시각화: 아이템 빈도 그래프
______거래 데이터 시각화: 희소 행렬 도표화
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
______연관 규칙 집합 정렬
______연관 규칙의 부분집합 구하기
______연관 규칙을 파일이나 데이터 프레임에 저장하기
______더 효율적인 실행을 위해 Eclat 알고리듬을 사용하기
__요약
09장. 데이터 그룹 찾기: k-평균 군집화
__군집화의 이해
____머신러닝 작업으로서 군집화
____군집화 알고리듬의 클러스터
____k-평균 군집화 알고리듬
______거리 이용해 클러스터 할당 및 수정
______적절한 클러스터 개수 선택
__k-평균 군집화를 이용한 10대 시장 세분화 발굴
____단계 1: 데이터 수집
____단계 2: 데이터 탐색과 준비
______데이터 준비: 결측치 더미 코딩
______데이터 준비: 결측치 대체
____단계 3: 데이터에 대한 모델 훈련
____단계 4: 모델 성능 평가
____단계 5: 모델 성능 개선
__요약
10장. 모델 성능 평가
__분류 성능 측정
____분류기의 예측 이해
____혼동 행렬 자세히 보기
____혼동 행렬을 사용한 성능 측정
____정확도를 넘어: 다른 상능 측도
______카파 통계량
______매튜의 상관 계수
______민감도와 특이도
______정밀도와 재현율
______F-측도
__ROC 곡선으로 성능 트레이드오프 시각화
____ROC 곡선 비교
____ROC 곡선하 영역
____ROC 곡선의 생성과 R로 AUC 계산
__미래의 성능 예측
____홀드아웃 방법
____교차 검증
____부트스트랩 샘플링
__요약
11장. 머신러닝으로 성공하기
__성공적인 머신러닝 전문가를 만드는 것
__성공적인 머신러닝 모델을 만드는 요소
____뻔한 예측 피하기
____공정한 평가 수행
____실세계 영향 고려
____모델에 신뢰 구축
__데이터 과학에 과학을 담기
____R 노트북과 R 마크다운의 사용
____고급 데이터 탐색 수행
______데이터 탐색 로드맵 구축
______이상치 상대하기: 실세계 함정
______예제: 시각적 데이터 탐색에 ggplot2 사용
__요약
12장. 고급 데이터 준비
__특징 공학 수행
____사람과 기계의 역할
____빅데이터와 딥러닝의 영향
__특징 공학의 실제 적용
____힌트 1: 새로운 특징 브레인스토밍
____힌트 2: 문맥에 숨은 통찰력 찾기
____힌트 3: 수치 범위 변환
____힌트 4: 이웃의 행동 관찰
____힌트 5: 연계된 행 활용
____힌트 6: 시계열 분해
____힌트 7: 외부 데이터 첨부
__R의 tidyverse 탐색
____tibble로 타이디 테이블 구조 만들기
____readr와 readxl을 사용해 사각형 파일을 더 빠르게 읽기
____dplyr로 데이터 준비하고 파이프하기
____stringr로 문자 변환
____lubridate를 사용한 데이터 정리
__요약
13장. 까다로운 데이터: 너무 많고, 너무 적고, 너무 복잡
__고차원 데이터의 과제
____특징 선택 적용
______필터 기법
______래퍼 기법과 임베디드 기법
______예제: 특징 선택에 단계적 회귀 사용
______예제: Boruta를 사용한 특징 선택
____특징 추출 수행
______주성분 분석 이해
______예제: PCA를 사용해 고차원 소셜 미디어 데이터 축소
__희소 데이터 사용
____희소 데이터 식별
____예제: 희소 범주형 데이터 재매핑
____예제: 희소 숫자 데이터 빈 만들기
__누락된 데이터 처리
____누락된 데이터의 유형 이해
____결측값 대치 수행
______결측값 표시기가 있는 단순 대치
______결측값 패턴
__불균형 데이터 문제
____데이터 군형 조정을 위한 간단한 전략
____SMOTE를 사용해 합성 균형 데이터 세트 생성
______예제: R에서 SMOTE 알고리듬 적용
____균형이 항상 더 나은지 고려
__요약
14장. 더 나은 학습자 구축
__더 나은 성능을 위해 기본 모델 조정
____하이퍼파라미터 튜닝의 범위 결정
____예제: caret를 사용한 튜닝 자동화
____간단히 튜닝된 모델 만들기
____맞춤형 튜닝 프로세스
__앙상블을 통한 모델 성능 개선
____앙상블 학습의 이해
____인기 있는 앙상블 기반 알고리듬
______배깅
______부스팅
______랜덤 포레스트
______그래디언트 부스팅
______XGBoost를 사용한 익스트림 그래디언트 부스팅
______트리 기반 앙상블이 인기 있는 이유
__메타학습을 위한 모델 쌓기
____모델 쌓기와 혼합 이해
____R에서의 블렌딩 및 스태킹을 위한 실용적인 방법
__요약
15장. 빅데이터 활용
__딥러닝의 실제 적용
____딥러닝으로 시작하기
______딥러닝을 위한 적절한 과제 선택
______텐서플로와 케라스 딥러닝 프레임워크
____컨볼루션 신경망의 이해
______전이 학습과 미세 튜닝
______예제: R에서 사전 훈련된 CNN을 사용한 이미지 분류
__비지도학습과 빅데이터
____고차원적 개념을 임베딩으로 표현
______단어 임베딩 이해
______예제: R에서 텍스트를 이해하기 위한 word2vec 사용
____고차원 데이터 시각화
______빅데이터 시각화를 위한 PCA 사용의 한계
______t-SNE 알고리듬 이해
______예제: t-SNE로 데이터의 자연적 클러스터 시각화
__대규모 데이터 세트 처리에 R 적용
____SQL 데이터베이스에서 데이터 쿼리
______데이터베이스 연결 관리를 위한 정돈된 접근 방식
______dbplyr와 함께 dplyr용 데이터베이스 백엔드 사용
____병렬 처리로 더 빠르게 작업 수행
______R의 실행 시간 측정
______R에서 병렬 처리 활성화
______foreach와 doParallel을 통한 병렬 활용
______caret을 사용해 병렬로 모델 훈련과 평가
____특수 하드웨어와 알고리듬 활용
______아파치 스파크를 통한 맵리듀스 개념의 병렬 컴퓨팅
______H2O로 분산되고 확장 가능한 알고리듬으로 학습
______GPU 컴퓨팅
__요약
◈ 이 책에서 다루는 내용 ◈
◆ 머신러닝의 원시 데이터에서 구현까지의 엔드-투-엔드 과정 학습
◆ 최근접 이웃과 베이지안 기법으로 주요 결과 분류
◆ 결정트리, 규칙, 서포트 벡터 머신을 사용해 미래의 사건 예측
◆ 회귀기법으로 수치 데이터를 예측하고 금융 수치 추정
◆ 인공신경망으로 복잡한 프로세스 모델링
◆ tidyverse를 사용해 데이터를 준비, 변환, 정제
◆ 모델을 평가하고 성능을 향상
◆ R을 SQL 데이터베이스와 Spark, Hadoop, H2O, TensorFlow 등의 떠오르는 빅데이터 기술과 연결
◈ 이 책의 대상 독자 ◈
데이터에 접근하고 그 데이터를 활용하고자 하는 사업 분석가, 사회 과학자 등의 응용 분야 종사자를 대상으로 하는 책이다. 이미 머신러닝에 대해 약간 알고 있지만 R을 사용한 경험이 없을 수도 있고, 반대로 R에 대해 약간 알고 있지만 머신러닝은 처음이거나 아예 둘 다 처음일 수도 있다. 어떤 경우에도 이 책은 여러분을 빠르게 시작하게 해줄 것이다. 기본 수학과 프로그래밍 개념에 약간이라도 익숙하다면 도움이 되겠지만 사전 경험은 필요하지 않다. 필요한 것은 호기심뿐이다.
◈ 이 책의 구성 ◈
1장, ‘머신러닝 소개’에서는 머신 학습자(machine learner)를 정의하고 구분해주는 용어와 개념을 살펴보고, 학습 작업을 적절한 알고리듬에 매칭하는 방법을 제시한다.
2장, ‘데이터의 관리와 이해’에서는 R을 이용해서 데이터를 직접 다룰 수 있는 기회를 제공한다. 데이터를 로딩하고, 탐색하고, 이해하는 데 사용되는 필수 데이터 구조와 절차를 설명한다.
3장, ‘게으른 학습: 최근접 이웃을 사용한 분류’에서는 단순하지만 강력한 머신러닝 알고리듬을 이해하고, 첫 번째 실제 작업인 암의 악성 샘플 식별에 적용하는 방법을 알려준다.
4장, ‘확률적 학습: 나이브 베이즈 분류’에서는 최첨단 스팸 필터링 시스템에서 사용하고 있는 확률의 핵심적인 개념을 소개한다. 독자는 자신만의 스팸 필터를 개발하는 과정에서 텍스트 마이닝의 기초를 배울 수 있다.
5장, ‘분할 정복: 의사결정 트리와 규칙 기반의 분류’에서는 예측을 정확하고 쉽게 설명하는 2가지 학습 알고리듬을 탐색한다. 이 방법은 투명성이 중요한 작업에 적용된다.
6장, ‘수치 데이터 예측: 회귀 방법에’서는 수치 예측에 사용되는 머신러닝 알고리듬을 소개한다. 이 기법은 통계 분야에 아주 많이 포함돼 있으므로 수치 관계를 이해하는 데 필요한 필수 척도도 함께 알아본다.
7장, ‘블랙박스 방법: 신경망과 서포트 벡터 머신’에서는 복잡하고 강력한 두 종류의 머신러닝 알고리듬을 다룬다. 수학이 위협적으로 보일 수 있겠지만 내부 작동을 보여주는 예제와 함께 간단한 용어로 진행한다.
8장, ‘패턴 찾기: 연관 규칙을 이용한 장바구니 분석’에서는 많은 소매업체가 채택한 추천 시스템의 알고리듬을 접할 수 있다. 소매업체가 나의 구매 습관을 나보다 더 잘 아는 이유가 궁금한 적이 있었다면 8장에서 그 비밀을 밝혀준다.
9장, ‘데이터 그룹 찾기: k-평균 군집화’에서는 관련 아이템을 군집화하는 절차를 알아본다. 이 알고리듬을 활용해 온라인 커뮤니티에서 프로필을 식별한다.
10장, ‘모델 성능 평가’에서는 머신러닝 프로젝트의 성공 여부를 측정하고 미래 데이터에 대한 학습자의 신뢰할 만한 성능 추정치를 얻는 방법에 대해 정보를 제공한다.
11장, ‘머신러닝으로 성공하기’에서는 교과서 데이터 세트에서 실세계 머신러닝 문제로 전환할 때 마주치는 흔한 함정과 이 문제를 극복하는 데 필요한 도구, 전략, 소프트 스킬을 알아본다.
12장, ‘고급 데이터 준비’에서는 머신러닝 프로세스를 도와 의미 있는 정보를 추출하고자 대용량 데이터 세트를 다루는 데 도움이 되는 tidyverse 패키지를 소개한다.
13장, ‘까다로운 데이터: 너무 많고, 너무 적고, 너무 복잡한 데이터’에서는 유용한 정보가 거대한 데이터 세트 속에서 바늘을 찾는 것과 유사하게 유실돼 머신러닝 프로젝트를 방해할 수 있는 여러 일반적인 문제에 대한 해결책을 고려한다.
14장, ‘더 나은 학습자 구축’에서는 머신러닝 대회 리더보드 상위 팀들이 사용하는 방법을 공개한다. 경쟁심을 갖고 있거나 데이터에서 최대한의 이점을 얻고자 하는 경우 이러한 기술을 여러분의 능력에 추가해야 할 것이다.
15장, ‘빅데이터 활용’에서는 머신러닝의 최전선을 탐구한다. 매우 큰 데이터 세트를 다루는 것부터 R의 작업 속도를 높이는 것까지, 다루는 주제는 여러분이 R로 가능한 범위의 한계를 넓히는 데 도움이 될 것이며, 구글과 같은 대규모 기관에서 이미지 인식 및 텍스트 데이터 이해를 위해 개발한 정교한 도구를 활용할 수 있게 해줄 것이다.
◈ 옮긴이의 말 ◈
머신러닝에 대한 기초부터 최신의 트렌드까지 ‘꼼꼼하게’ 소개한 책이다. 4판에서는 4개의 장을 새로 보강해 머신러닝에 있어 핵심인 데이터에서 발생하는 결측치 등의 여러 문제를 어떻게 다루는지에 대해 상세히 알려준다. 동시에 빅데이터를 다루는 방법을 설명한다.
머신러닝의 기본 기법을 설명하는 기존의 여러 장도 새로운 예제를 보강하거나 추가적인 설명을 통해 더 쉽고 편하게 머신러닝을 익힐 수 있게 배려하고 있다. 각 장에 있는 여러 예제를 따라 하다 보면 자연스럽게 머신러닝의 여러 개념을 익힐 수 있다. 머신러닝에 대한 여러 입문서가 있지만 이 책은 내용의 충실성과 함께 비유를 통한 쉬운 설명을 모두 겸비한 흔치 않은 책이다. 머신러닝을 처음으로 배우려 하거나 이미 머신러닝의 기초 개념을 알고 있지만 좀 더 깊은 원리와 예제를 직접 경험하고 싶다면 이 책이 좋은 가이드가 될 것이다.
작가정보
서울과학종합대학교 AI첨단대학원 주임교수
한국과학기술원(KAIST) 겸직교수
한국금융연수원 겸임교수
인공지능연구원(AIRI) 부사장
금융위원회 금융규제혁신회의 위원
금융위원회 법령해석심의위원회 위원
금융위원회 적극행정위원회 위원
금융위원회 디지털자산 자문위원
한국산업기술진흥원(KIAT) ‘규제자유특구 분과위원회’ 위원
과기정통부 우정사업본부 정보센터 네트워크 & 블록체인 자문위원
한국과학기술원(KAIST) 전산학과
전) BNP 파리바 카디프 전무
전) 삼성생명 마케팅 개발 수석
전) 보험넷 Founder & CEO
전) LG전자 연구원
서울과학종합대학원 AI전략경영 주임교수와 카이스트 겸직교수 그리고 한국금융연수원 겸임교수를 맡고 있으며, 인공지능연구원(AIRI)의 부사장으로도 재직 중이다. 한국과학기술원KAIST 전산학과 계산 이론 연구실에서 공부했으며 공학을 전공한 금융 전문가로, 세계 최초의 핸드헬드-PC(Handheld-PC) 개발에 참여해 한글 윈도우 CE 1.0과 2.0을 미국 마이크로소프트 본사에서 공동 개발했다. 1999년에는 전 보험사 보험료 실시간 비교 서비스를 제공하는 핀테크 전문회사 ㈜보험넷을 창업했고 이후 삼성생명을 비롯한 생명보험사 및 손해보험사에서 CMO(마케팅총괄 상무), CSMO(영업 및 마케팅 총괄 전무) 등을 역임하면서 혁신적인 상품과 서비스를 개발, 총괄했다.
세계 최초로 파생상품인 ELS를 기초 자산으로 한 변액 보험을 개발해 단일 보험 상품으로 5천억 원 이상 판매되는 돌풍을 일으켰고, 매일 분산 투자하는 일 분산 투자(daily Averaging) 변액 보험을 세계 최초로 개발해 상품 판매 독점권을 획득했다. 인공지능 연구원에서 머신러닝 기반의 금융 솔루션 개발에 관련된 다양한 활동을 하고 있으며 금융위원회, 금융정보분석원 등에 다양한 자문을 하고 있다.
저서로는 『비트코인과 블록체인, 탐욕이 삼켜버린 기술』(에이콘, 2018)과 대한민국학술원이 2019 교육부 우수학술도서로 선정한 『블록체인 해설서』(에이콘, 2019)와 2022년 문체부의 세종도서로 선정된 『돈의 정체』(에이콘, 2019), 한국금융연수원의 핀테크 전문 교재인 『헬로, 핀테크!』(공저, 2020), 『헬로, 핀테크! - 인공지능 편』(2021)이 있다.
작가의 말
머신러닝은 핵심적으로 데이터를 실행 가능한 지능으로 변환하는 알고리듬을 기술한다. 이 사실은 머신러닝을 현대의 빅데이터 시대에 적합하게 만든다. 머신러닝이 없다면 우리 주변의 거대한 정보 스트림을 이해하는 것은 거의 불가능할 것이다.
R은 크로스플랫폼이며 비용이 들지 않는 통계 프로그래밍 환경을 제공해서 머신러닝을 시작하는 이상적인 방법을 구축해준다. R은 강력하지만 배우기 쉬운 도구를 제공해 데이터에서 통찰을 찾는 데 도움을 준다.
이 책은 이러한 알고리듬이 어떻게 작동하는지 이해하고자 필요한 필수 이론과 실전 사례 연구를 결합해 머신러닝을 시작하고 프로젝트에 이를 적용할 수 있는 모든 지식을 제공한다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)