본문 바로가기

추천 검색어

실시간 인기 검색어

챗GPT와 랭체인을 활용한 LLM 기반 AI 앱 개발

랭체인 기초부터 슬랙 앱 제작과 배포까지, 실무 중심의 LLM 애플리케이션 구축
위키북스

2024년 06월 29일 출간

국내도서 : 2024년 06월 05일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 pdf (11.97MB)
ISBN 9791158395292
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장
정가 : 21,600원

쿠폰적용가 19,440

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

이 책은 챗GPT와 랭체인 프레임워크를 이용해 대규모 언어 모델(LLM)을 실제로 사용할 수 있는 수준의 애플리케이션에 통합하는 방법을 단계별 실습을 통해 알려줍니다. OpenAI API와 랭체인의 기본 개념부터 웹 애플리케이션과 슬랙 앱 구현, 그리고 프로덕션 환경에 배포하기까지 실전 사례를 중심으로 LLM 애플리케이션 개발의 전 과정을 익힐 수 있습니다. 또한 벡터 데이터베이스, 서버리스 아키텍처 등 최신 기술의 활용법과 보안, 개인정보보호 등 실무에 필요한 노하우도 배울 수 있습니다. 이 책을 통해 여러분도 LLM의 무한한 잠재력을 현실에 적용할 수 있는 개발자로 한 걸음 더 나아갈 수 있을 것입니다.

★ 이 책에서 다루는 내용 ★

◎ 챗GPT API와 랭체인 프레임워크의 기본 개념과 사용법
◎ 프롬프트 엔지니어링 기법으로 LLM의 성능 끌어올리기
◎ 외부 검색과 대화 기록을 활용한 웹 애플리케이션 개발
◎ 스트리밍 응답과 슬랙 앱 통합으로 실용성 높은 챗봇 구현
◎ 벡터 데이터베이스와 검색으로 자체 데이터에 기반한 질의응답 시스템 구축
◎ AWS 람다와 서버리스 프레임워크를 활용한 프로덕션 환경 배포
◎ LLM 애플리케이션의 테스트와 평가 및 보안 대책
▣ 1장: 대규모 언어 모델(LLM)을 이용한 애플리케이션을 개발하고 싶다!
1.1 챗GPT를 사용해 보자
1.2 프롬프트로 할 수 있는 일
__일상 업무에 활용해 보자
1.3 프로그래밍에 활용해 보자
1.4 챗GPT 사용 시 주의 사항
1.5 챗GPT의 유료 플랜으로 할 수 있는 것들
__GPT-4
__브라우징
__데이터 분석
__챗GPT 외의 OpenAI 서비스
1.6 대규모 언어 모델(LLM)을 비즈니스에 활용
1.7 LLM을 활용한 비즈니스 및 응용 사례 소개
__사이다스 주식회사 사례: CYDAS PEOPLE Copilot Chat
__PingCAP 주식회사 사례: Chat2Query
__Alexa 기술 사례 (개인 개발) : helloGPT
__주식회사 소라콤 사례: SORACOM Harvest Data Intelligence
1.8 LLM을 이용한 애플리케이션 개발에서 주의해야 할 점
1.9 이 책에서 다루는 기술에 대하여
__랭체인
__클라우드 서비스 (특히 서버리스)
__슬랙 앱으로 협업을 촉진
요약

▣ 2장: 프롬프트 엔지니어링
2.1 왜 갑자기 프롬프트 엔지니어링?
__챗GPT의 프롬프트 엔지니어링
__애플리케이션 개발에서의 프롬프트 엔지니어링
__프롬프트 엔지니어링은 위험하지 않나?
2.2 프롬프트 엔지니어링이란?
2.3 프롬프트 구성 요소의 기초
__주제: 레시피 생성 AI 앱
__프롬프트 템플릿화
__명령과 입력 데이터의 분리
__문맥을 제공하기
__출력 형식 지정하기
__프롬프트 구성 요소 요약
2.4 Prompt Engineering Guide에서: 챗GPT의 무한한 잠재력을 이끌어내다
__Zero-shot 프롬프팅
__Few-shot 프롬프팅
__Zero-shot Chain of Thought 프롬프팅
요약

▣ 3장: 챗GPT의 API를 사용하는 방법
3.1 OpenAI의 문서 생성 모델
__챗GPT의 ‘모델’
__OpenAI의 API로 사용할 수 있는 문서 생성 모델
__모델 스냅숏
3.2 챗GPT의 API 기본 사항
__Chat Completions API
__Chat Completions API 요금
__발생된 요금 확인
3.3 입출력 길이 제한과 과금에 영향을 미치는 ‘토큰’
__토큰
__Tokenizer와 tiktoken 소개
__한국어의 토큰 수
3.4 Chat Completions API를 사용할 수 있는 환경 준비하기
__Google Colab이란?
__Google Colab 노트북 만들기
__OpenAI의 API 키 준비
3.5 Chat Completions API를 만져보기
__OpenAI의 라이브러리
__Chat Completions API 호출
__대화 기록에 기반한 응답 얻기
__응답을 스트리밍으로 받기
__기본 파라미터
3.6 Function calling
__Function calling 개요
__Function calling 샘플 코드
__파라미터 ‘function_call’
__Function calling을 응용한 JSON 생성
요약

▣ 4장: 랭체인 기초
4.1 랭체인 개요
__랭체인 사용 사례
__랭체인을 배우는 이유
__랭체인의 모듈
__랭체인 설치
4.2 Language models
__LLMs
__Chat Models
__Callback을 이용한 스트리밍
__언어 모델 요약
4.3 Prompts
__PromptTemplate
__ChatPromptTemplate
__Example selectors
__프롬프트 요약
4.4 Output parsers
__Output parsers 개요
__PydanticOutputParser를 이용해 Python 객체 가져오기
__Output parsers 요약
4.5 Chains
__LLMChain-PromptTemplate, Language model, OutputParser 연결하기
__SimpleSequentialChain-Chain과 Chain 연결하기
__Chains 요약
4.6 Memory
__ConversationBufferMemory
__더욱 편리한 Memory
__Memory 저장 위치
__Memory 요약

▣ 5장: 랭체인 활용
5.1 Data connection
__RAG(Retrieval Augmented Generation)
__Data connection 개요
__Document loaders
__Document transformers
__Text embedding models
__Vector stores
__Retrievers
__RetrievalQA(Chain)
__Data connection 요약
5.2 Agents
__Agents 개요
__Agents 사용 예시
__Agents의 작동 원리와 ReAct 개념
__Tools
__Toolkits
__Function calling을 사용하는 OpenAI Functions Agent
__한 번에 여러 도구를 사용하기
__Agents 요약
요약

▣ 6장: 외부 검색과 히스토리를 바탕으로 응답하는 웹 앱 구현하기
6.1 이번 장에서 구현할 응용 프로그램
__구현할 애플리케이션의 구성
__이 책으로 개발하는 방법
__AWS Cloud9 개요
__스트림릿 개요
__전체 코드
6.2 Cloud9 실행 및 개발 환경 구축하기
__Cloud9 환경 만들기
__깃허브 저장소 생성하기
__Cloud9과 깃허브 연동
__파이썬 환경 구축하기
6.3 스트림릿의 헬로 월드
6.4 사용자 입력 받기
6.5 입력 내용과 응답을 화면에 표시하기
6.6 대화 기록 보기
6.7 LangChain으로 OpenAI의 Chat Completions API 실행하기
6.8 Agent를 사용하여 필요에 따라 외부 정보 검색하게 하기
6.9 채팅 대화 기록을 바탕으로 응답하기
6.10 스트림릿 커뮤니티 클라우드에 배포
__종속 패키지 목록 작성
__깃허브에 소스 코드 업로드하기
__스트림릿 커뮤니티 클라우드에 배포하기
__다른 사용자 초대하기
요약

▣ 7장: 스트림 형식으로 히스토리를 기반으로 응답하는 슬랙 앱 구현
7.1 슬랙 앱을 만드는 이유
__어떤 구성으로 할까?
__개발 환경
__깃허브 저장소의 파일 구성
7.2 환경 준비
__Cloud9 환경 만들기
__깃허브에서 슬랙 앱용 저장소 생성하기
__파이썬 가상 환경 활성화하기
7.3 환경 설정 파일 만들기
7.4 슬랙 앱 새로 만들기
7.5 소켓 모드 활성화
7.6 애플리케이션 만들기
7.7 이벤트 설정하기
7.8 액션 전송 및 응답하기
7.9 스레드 내 답글 달기
7.10. OpenAI API 호출하기
7.11 스트리밍으로 응답하기
7.12 대화 기록 보관하기
__Momento Cache란?
7.13 Lazy 리스너에서 슬랙 재시도 전에 간단한 응답을 반환하는 방법
7.14 AWS Lambda에서 실행되는 핸들러 함수 만들기
7.15 chat.update API 제한 우회하기
7.16 AI 생성 메시지임을 표시하기
7.17 배포하기
7.18 Socket Mode에서 AWS Lambda로 전환하기
요약

▣ 8장: 사내 문서에 관해 답변하는 슬랙 앱 구현하기
8.1 챗GPT가 독자적인 지식으로 답변하게 한다
__파인튜닝과 RAG
__RAG 워크플로
__답변문 생성에 LLM이 필요한가?
__업무를 압박하는 ‘무언가를 찾는 시간’
__사내 데이터 정비하기
8.2 임베딩이란?
8.3 구현할 애플리케이션 개요
__완성판 소스코드
8.4 개발 환경 구축하기
__Cloud9의 디스크 공간이 부족할 때 확장하는 방법
8.5 샘플 데이터 준비
8.6 파인콘 설정
__파인콘이란?
__파인콘 이외의 벡터 데이터베이스
__파인콘 가입하기
8.7 파인콘에 벡터 데이터 저장하기
8.8 파인콘 검색 및 답변하기
8.9 대화 기록을 바탕으로 질의응답하기
__단순히 대화 기록을 넣어도 잘 작동하지 않는 경우
__대화 이력을 바탕으로 질문을 다시 작성한다.
8.10 RunnablePassthrough 사용하기
요약

▣ 9장: LLM 앱의 프로덕션 릴리스를 향해
9.1 기업에서 생성 AI를 활용하려면
9.2 공공기관·협회의 ‘생성형 AI 이용 가이드라인’을 바탕으로 자체 가이드라인 마련
__외부 서비스 이용 시 서비스 약관을 꼼꼼히 읽을 것
9.3 서비스 기획 및 설계 단계에서의 과제
__프로젝트 리스크 대응
9.4 테스트 및 평가에 대하여
__LLM 부분 평가 방법
__랭스미스의 성능 모니터링
9.5 보안 대책에 대하여
__OWASP Top 10 for Large Language Model Applications
__랭체인 코어의 취약점 제거에 대하여
9.6 개인 정보 보호 관점 및 일본의 개인정보 보호 제도
__개인정보보호법에서 규정한 본인 동의 및 목적 내 사용
__개인정보 보호에 관한 ‘결정지향적’ 이익모델과 정보적 타자성으로부터의 자유에 대하여
9.7 EU에서 규정한 금지 AI 및 고위험 AI 처리 동향

▣ 부록A: 웹 앱, 슬랙 앱 개발 환경 구축
A.1 AWS 가입
A.2 Cloud9 환경 생성
__Cloud9 요금 설명
A.3 Cloud9와 깃허브 연동
__깃허브와 SSH 설정
__Git 사용자 설정
__깃허브에서 저장소 복제하기
A.4 Cloud9에서 파이썬 환경 구축
__pyenv 설치
__Python 3.10 설치
__Python 3.10을 사용하기 위한 절차
__가상 환경에 대하여
A.5 Momento 가입

▣ 부록B: 랭체인의 새로운 표기법 ‘랭체인 표현 언어(LCEL)’ 소개
B.1 LCEL(LangChain Expression Language)이란?
B.2 LCEL의 기본 사용법
__prompt와 model을 연결하기
__output_parser 연결
B.3 LCEL의 작동 방식
B.4 약간 더 복잡한 LCEL 예제
__규칙 기반 처리(일반 함수) 끼워 넣기
__RAG(검색 증강 생성)
B.5 결론

작가정보

주식회사 사이다스 이사 CTO/주식회사 섹션나인 대표이사 CEO. 일본 챗GPT 커뮤니티를 주최한다. HCM Suite ‘CYDAS PEOPLE’의 개발 및 운영을 맡고 있다. 서버리스 기술 커뮤니티를 주최해 일본에서의 서버리스 보급을 촉진하고 있다.

소프트웨어 엔지니어. IT 기업에서 프리랜서 엔지니어를 거쳐 회사를 세웠다. 현재는 현업에 종사하는 엔지니어의 스킬 향상을 주제로 스터디 모임 개최 및 교재 제작 활동을 하고 있다. 온라인 강좌 유데미 베스트셀러 강좌를 다수 보유하고 있다. AWS, 도커/쿠버네티스, 서버리스 기술 등을 다루는 ‘야생의’ 클라우드 네이티브 인재이며 최근에는 랭체인 전문가로 인정받고 있다. 스터디 커뮤니티인 StudyCo를 운영한다.

번역 최용

한국방송통신대학교에서 컴퓨터과학을 전공하고 IT 시스템 운영을 자동화하는 소프트웨어의 기술 지원을 주로 했다. 프로그래밍 책을 쓰고 번역하다가 IT 전문 출판사의 편집자가 됐다. 데이터 분석과 인공지능 책을 주로 담당하며, 업무 생산성을 높이는 데에 관심이 많다. 누구나 챗GPT를 활용해 자신의 이야기를 책으로 쓸 수 있게 도우려 개발한 ‘Book Creator Guide’ GPT가 OpenAI의 추천을 받아 글쓰기 부문 상위권에 올랐다. 저자/번역자로서 《OpenAI API와 파이썬으로 나만의 챗GPT 만들기》 《랭체인 완벽 입문》(위키북스, 2024), 《Hello IT 파이썬을 제대로 활용해보려고 해》(패스트캠퍼스, 2022) 등을 냈고, 위키독스에 ‘전뇌해커’라는 필명으로 전자책을 쓴다. 서울사이버대학교 드론·로봇융합학과에 재학 중이다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    챗GPT와 랭체인을 활용한 LLM 기반 AI 앱 개발 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    챗GPT와 랭체인을 활용한 LLM 기반 AI 앱 개발 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    챗GPT와 랭체인을 활용한 LLM 기반 AI 앱 개발
    랭체인 기초부터 슬랙 앱 제작과 배포까지, 실무 중심의 LLM 애플리케이션 구축
    저자 모두보기
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)