[epub3.0] 고객 니즈가 보이는 데이터 분석 with 파이썬
2024년 04월 22일 출간
국내도서 : 2024년 04월 22일 출간
- eBook 상품 정보
- 파일 정보 ePUB (67.27MB)
- ISBN 9791140709106
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
쿠폰적용가 23,760원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
1.1 실습 환경 준비
1.1.1 konlpy 설치
1.1.2 주피터 노트북 설치
1.1.3 주피터 노트북 사용법 익히기
1.1.4 분석에 필요한 라이브러리 설치
1.2 파이썬
1.2.1 변수와 데이터 타입
1.2.2 자료 구조
1.2.3 조건문
1.2.4 반복문
1.2.5 함수
1.2.6 변수 범위
1.3 판다스
1.3.1 데이터 프레임 생성
1.3.2 데이터 프레임 형태 조절
1.3.3 데이터 추출
1.3.4 논리 연산자
1.3.5 데이터 요약
1.3.6 결측치 처리
1.3.7 열 생성
1.3.8 데이터 그룹화
1.3.9 데이터 병합
1.4 경기도 인구 데이터 분석
1.5 국민건강보험공단 진료 내역 정보 전처리
1.5.1 설정 및 데이터 가져오기
1.5.2 데이터 연결 및 필요한 열만 추출
1.5.3 다른 데이터와 데이터 합치기 1
1.5.4 다른 데이터와 데이터 합치기 2
1.5.5 함수를 사용한 데이터 처리
2장 스크래퍼로 데이터 수집
2.1 스크래퍼란
2.2 스크래퍼 첫걸음
2.2.1 클라이언트와 서버의 개념
2.2.2 알아야 할 HTML 기초 지식
2.2.3 HTML 파일 생성
2.2.4 간단한 스크래퍼 만들기
2.3 requests 라이브러리를 활용한 커뮤니티 정보 수집
2.3.1 스크래퍼 제작 첫 단계는 URL 찾기부터
2.3.2 HTML 수집과 파싱
2.3.3 정보 수집하기
2.3.4 데이터 전처리: 정규 표현식
2.3.5 결과 저장
2.4 무엇이든 수집하는 selenium 라이브러리
2.4.1 가상 웹 브라우저 사용 준비
2.4.2 양질의 정보가 있는 네이버 카페
2.4.3 생생한 고객 의견을 들을 수 있는 쇼핑몰 리뷰 수집
3장 수집한 데이터로 자연어 분석
3.1 내가 그 편의점만 가는 이유
3.1.1 커뮤니티 데이터 불러오기
3.1.2 데이터 전처리 1: 정규 표현식
3.1.3 데이터 전처리 2: 형태소 분석
3.1.4 데이터 분석 1: 많이 등장한 단어를 찾아 주는 다빈도 단어 분석
3.1.5 데이터 분석 2: 자주 등장하는 짝꿍 단어를 찾아 주는 nGram 분석
3.1.6 데이터 분석 3: 편의점 주력 제품 찾기
3.1.7 데이터 분석 4: TFIDF로 편의점 주요 키워드 찾기
3.1.8 편의점에는 어떤 제품이 반응이 좋을까요: 결과 1차 정리
3.2 어떤 떡볶이가 맛있을까?
3.2.1 데이터 불러오기: 쇼핑몰 데이터
3.2.2 데이터 전처리: 가중치 구하기
3.2.3 데이터 분석: 자주 등장하는 떡볶이 해시태그 찾기
3.2.4 데이터 불러오기: 떡볶이 제품 리뷰 데이터
3.2.5 데이터 전처리: 정규 표현식
3.2.6 데이터 전처리: 형태소 분석
3.2.7 데이터 분석: 다빈도 표현 분석
3.2.8 데이터 분석: 떡볶이 소비 환경 분석
3.2.9 어떤 떡볶이를 기획하면 좋을까?
3.3 2040 여성들의 건강 고민 살피기
3.3.1 데이터 불러오기: 여성 건강 커뮤니티 데이터
3.3.2 데이터 분석: 게시물 날짜 정보 구하기
3.3.3 데이터 분석: 포스팅 랭킹 구하기
3.3.4 데이터 분석: 주요 주제 찾기
3.3.5 형태소 분석: 명사 추출
3.3.6 데이터 불러오기: 트위터
3.3.7 데이터 전처리: 맞춤법 교정
3.3.8 데이터 전처리: 명사 추출
3.3.9 데이터 분석: nGram
3.3.10 국민건강보험공단에서 제공하는 진료 내역 정보 데이터 분석
3.3.11 2040 여성에게 어떤 건강 서비스를 제공하면 좋을까?
3.4 내 여자친구 최애 쿠션 찾아 주기
3.4.1 데이터 가져오기
3.4.2 제품 기본 정보 데이터 전처리
3.4.3 해시태그 전처리
3.4.4 해시태그 분석으로 제품 트렌드 변화 관찰
3.4.5 Rank( ) 함수로 해시태그에 가중치 더하기
3.4.6 해시태그 빈도 및 기울기 구하기
3.4.7 주요 제품 열 개 찾아보기
3.4.8 리뷰 데이터 불러오기
3.4.9 형태소 분석을 이용하여 리뷰에서 의도 찾기
3.4.10 nGram으로 키워드 파악
3.4.11 표현의 숨겨진 의미 찾기
3.4.12 머신 러닝을 활용하여 중요한 내용 찾기
3.4.13 쿠션에 어떤 기능을 강화하면 좋을까?
3.5 자연어 분석 심화편
3.5.1 편의점 데이터 분석: 유튜브 댓글 데이터 불러오기
3.5.2 데이터 전처리 1: 필요한 데이터만 남기는 데이터 압축 방법
3.5.3 데이터 전처리 2: 형태소 분석
3.5.4 데이터 분석 1: 다빈도 단어
3.5.5 데이터 분석 2: nGram
3.5.6 토픽 모델링
3.5.7 데이터 전처리: LDA로 계산할 데이터 준비
3.5.8 데이터 분석: LDA로 유튜브에서 보이는 편의점 토픽 살펴보기
3.5.9 편의점 제품과 서비스 제안
4장 자연어 분석에 필요한 통계 공부
4.1 자주 사용되는 통계 개념
부록 A GPT-3.5로 자연어 분석하기
부록 B 코랩 시작하기
부록 C GPU 사용 설정하기
작가정보
저자(글) 정인근 저자
아모레퍼시픽에서 AI 서비스 프로토타입 개발과 자연어 처리 분야에서 꾸준히 경력을 쌓아온 AI 개발자이다. 현재는 와디즈에서 근무 중이며 GPT를 활용해 서비스를 개선하고 새로운 서비스를 출시하는 데 집중하고 있다. 복잡한 문제를 단순한 알고리즘으로 처리하는 것을 선호하며, 정교함보다는 간결한 원칙에서 더 우수한 분석 결과를 도출한다고 믿는다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)