파이썬 텍스트 마이닝 바이블 2
2024년 03월 22일 출간
국내도서 : 2023년 11월 09일 출간
- eBook 상품 정보
- 파일 정보 PDF (15.74MB)
- ISBN 9791158395148
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 20,160원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
텍스트 분석이나 코딩 경험이 없는 독자도 쉽게 접할 수 있도록, 파이썬 기초와 텍스트 분석의 기초, 텍스트 분석을 하는 데 필요한 기본적인 내용(웹스크레이핑, 정규표현식 등)에 관해서도 부록에서 다룹니다.
▣ 13장: 딥러닝 소개
13.1 신경망
___13.1.1 신경망 소개
___13.1.2 신경망의 작동 원리
13.2 활성화 함수
___13.2.1 시그모이드 함수
___13.2.2 하이퍼볼릭 탄젠트 함수
___13.2.3 ReLU 함수
___13.2.4 Leaky ReLU 함수
___13.2.5 ELU 함수
___13.2.6 소프트플러스 함수
___13.2.7 GELU 함수
13.3 경사하강법
___13.3.1 사용되는 관측치의 수에 따른 경사하강법 구분
___13.3.2 신경망에서의 경사하강법 작동 원리
___13.3.3 오차 역전파
___13.3.4 경사 소실 문제
___13.3.5 경사 폭발 문제
___13.3.6 옵티마이저의 종류
___13.3.7 가중치 감쇠와 학습률 감쇠
13.4 가중치 초기화
___13.4.1 Xavier 초기화 방법
___13.4.2 He 초기화 방법
13.5 예제: 도시의 평균 집값 예측하기
___13.5.1 SGD 옵티마이저의 사용 예
___13.5.2 RMSprop 옵티마이저 사용의 예
___13.5.3 Adam 옵티마이저의 사용 예
13.6 신경망에서의 과적합 해결 방법
___13.6.1 L1/L2 규제화
___13.6.2 드롭아웃
___13.6.3 조기 종료
___13.6.4 배치 정규화
___13.6.5 계층 정규화
▣ 14장: FNN을 이용한 텍스트 분석과 단어 및 문서 임베딩
14.1 FNN을 이용한 텍스트 분석
14.2 단어 임베딩
___14.2.1 원-핫 벡터와 단어 임베딩
___14.2.2 Word2vec
___14.2.3 FastText
14.3 문서 임베딩
___14.3.1 Doc2vec
▣ 15장: CNN을 이용한 텍스트 분석
15.1 CNN
___15.1.1 CNN 소개
___15.1.2 파이썬 코딩하기
15.2 CNN을 이용한 텍스트 분석
___15.2.1 CNN에서의 문서 표현
___15.2.2 파이썬 코딩하기
▣ 16장: 순환신경망 기반 알고리즘을 이용한 텍스트 분석
16.1 RNN
___16.1.1 RNN 소개
___16.1.2 RNN을 이용한 감성분석
___16.1.3 각 단어의 은닉 상태 벡터를 모두 사용하기
___16.1.4 여러 개의 RNN 층 사용하기
16.2 LSTM
___16.2.1 LSTM 소개
___16.2.2 LSTM을 이용한 감성분석
___16.2.3 양방향 LSTM
___16.2.4 양방향 LSTM을 사용한 감성분석
16.3 seq2seq
▣ 17장: 트랜스포머
17.1 어텐션 알고리즘
17.2 셀프 어텐션
17.3 트랜스포머에서의 어텐션
17.4 트랜스포머 소개
___17.4.1 트랜스포머의 구조
___17.4.2 인코더 부분
___17.4.3 디코더 부분
___17.4.4 트랜스포머의 인코더 블록을 이용한 감성분석
▣ 18장: BERT
18.1 BERT의 구조
___18.1.1 BERT 내부 구조
___18.1.2 BERT 학습
___18.1.3 BERT 논문에서 사용된 다운스트림 작업
___18.1.4 BERT를 이용한 각 단어의 벡터 추출하기
18.2 파이썬 코딩하기
___18.2.1 BERT를 사용한 단어와 문장/문서의 벡터 추출하기
___18.2.2 영어 텍스트 감성분석
___18.2.3 한글 텍스트 감성분석
▣ 19장: BERT 기반 방법들
19.1 ALBERT
___19.1.1 ALBERT 소개
___19.1.2 파이썬 코딩하기
19.2 RoBERTa
___19.2.1 RoBERTa 소개
___19.2.2 파이썬 코딩하기
19.3 ELECTRA
___19.3.1 ELECTRA 소개
___19.3.2 파이썬 코딩하기
19.4 지식 증류 기반 방법들
___19.4.1 지식 증류
___19.4.2 DistilBERT
___19.4.3 TinyBERT
19.5 BERTopic
___19.5.1 문서 임베딩
___19.5.2 문서 군집화
___19.5.3 각 군집(토픽)을 나타내는 단어 찾기
___19.5.4 파이썬 코딩하기
▣ 20장: GPT 모형들
20.1 GPT-1
___20.1.1 GPT-1에서의 학습
20.2 GPT-2
___20.2.1 학습 데이터
___20.2.2 모형의 구조
___20.2.3 모형의 성능
___20.2.4 파이썬 코딩하기
20.3 GPT-3
___20.3.1 제로샷, 원샷, 퓨샷
___20.3.2 학습 데이터
___20.3.3 모형의 구조
___20.3.4 모형의 성능
___20.3.5 GPT-3 미세조정하기
20.4 InstructGPT
___20.4.1 InstructGPT에서의 미세 조정
___20.4.2 모형의 성능
20.5 ChatGPT
▣ 21장: 비전 트랜스포머를 이용한 텍스트 분석
21.1 ViT 소개
21.2 ViT를 이용한 이미지 분류
21.3 ViT를 이용한 텍스트 분류
___21.3.1 방법 1: N×D 문서에서 직접 패치를 추출
___21.3.2 방법 2: 문서를 패치로 분할하기 전에 Conv1D 필터 적용하기
___21.3.3 방법 3: N×C 결과물에서 C×C 패치 추출하기
▣ 22장: 오토인코더를 이용한 텍스트 분석
22.1 오토인코더 소개
22.2 오토인코더를 MNIST 데이터에 적용해 보기
22.3 오토인코더를 이용해 문서를 저차원 벡터로 표현하기
___22.3.1 LSTM 기반 오토인코더 사용해 보기
___22.3.2 CNN 기반 오토인코더 사용해 보기
▣ 부록A: 경사하강법에서의 순전파와 역전파
A.1 예제 신경망 모형
A.2 순전파
A.3 역전파
★ 이 책에서 다루는 내용 ★
◎ 파이썬 기초, 웹스크레이핑, 정규표현식
◎ 기본 수학: 선형대수, 확률, MLE, EM 알고리즘, 베이지안 추론 등
◎ 텍스트 전처리와 텍스트 네트워크 분석
◎ 기계학습 알고리즘을 활용한 텍스트 분석: K-평균, 위계적 군집 분석, DBSCAN, GMM, 차원◎ 축소, 로지스틱 회귀 모형, 나이브 베이즈, 결정 트리, 앙상블 알고리즘, SVM, 토픽 모델링
◎ 딥러닝 알고리즘을 활용한 텍스트 분석: FNN, CNN, RNN, LSTM, GRU, seq2seq, Transformer, BERT와 BERT 기반 알고리즘, GPT 모형, 비전 트랜스포머, 오토인코더
작가정보
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)