본문 바로가기

추천 검색어

실시간 인기 검색어

머신러닝 교과서 : 파이토치 편

탄탄한 이론과 다양한 예제로 배우는 머신 러닝/딥러닝 실전 가이드
길벗

2023년 12월 29일 출간

국내도서 : 2023년 11월 30일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 ePUB (70.70MB)
ISBN 9791140708130
지원기기 교보eBook App, PC e서재, 리더기
교보eBook App 듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

소득공제
소장
정가 : 46,400원

쿠폰적용가 41,760

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

아마존 베스트셀러인 『머신 러닝 교과서』가 파이토치 편으로 새롭게 태어났다! 머신 러닝과 딥러닝을 제대로 이해하기 위해 필요한 개념, 핵심 알고리즘 작동 방식과 사용 방법, 밑바탕이 되는 수학, 실용적인 예제, 빠지기 쉬운 함정을 피하는 방법까지 이론과 코드를 균형 있게 설명한다. 또한, 파이썬 기반의 핵심 라이브러리(SciPy, NumPy, scikit-learn, Matplotlib, Pandas)를 사용해 머신 러닝을, 파이토치를 사용해 딥러닝을 설명한다. 파이토치 핵심 개념은 물론이고, 『머신 러닝 교과서 3판』에서 다룬 내용 외에 트랜스포머, 파이토치 라이트닝, XGBoost, 그래프 신경망 등 최신 동향까지 추가했으며, 사이킷런과 파이토치 모두 최신 버전을 기준으로 한다. 머신 러닝과 딥러닝 기본기를 탄탄하게 다지고 싶은 분께 추천한다.

독자를 위한 디스코드 커뮤니티: https://bit.ly/tensor-discord
질의응답 오픈채팅방: https://bit.ly/tensor-chat
1장. 컴퓨터는 데이터에서 배운다
1.1 데이터를 지식으로 바꾸는 지능적인 시스템 구축
1.2 머신 러닝의 세 가지 종류
__1.2.1 지도 학습으로 미래 예측
__1.2.2 강화 학습으로 반응형 문제 해결
__1.2.3 비지도 학습으로 숨겨진 구조 발견
1.3 기본 용어와 표기법 소개
__1.3.1 이 책에서 사용하는 표기법과 규칙
__1.3.2 머신 러닝 용어
1.4 머신 러닝 시스템 구축 로드맵
__1.4.1 전처리: 데이터 형태 갖추기
__1.4.2 예측 모델 훈련과 선택
__1.4.3 모델을 평가하고 본 적 없는 샘플로 예측
1.5 머신 러닝을 위한 파이썬
__1.5.1 파이썬과 PIP에서 패키지 설치
__1.5.2 아나콘다 파이썬 배포판과 패키지 관리자 사용
__1.5.3 과학 컴퓨팅, 데이터 과학, 머신 러닝을 위한 패키지
1.6 요약

2장. 간단한 분류 알고리즘 훈련
2.1 인공 뉴런: 초기 머신 러닝의 간단한 역사
__2.1.1 인공 뉴런의 수학적 정의
__2.1.2 퍼셉트론 학습 규칙
2.2 파이썬으로 퍼셉트론 학습 알고리즘 구현
__2.2.1 객체 지향 퍼셉트론 API
__2.2.2 붓꽃 데이터셋에서 퍼셉트론 훈련
2.3 적응형 선형 뉴런과 학습의 수렴
__2.3.1 경사 하강법으로 손실 함수 최소화
__2.3.2 파이썬으로 아달린 구현
__2.3.3 특성 스케일을 조정하여 경사 하강법 결과 향상
__2.3.4 대규모 머신 러닝과 확률적 경사 하강법
2.4 요약

3장. 사이킷런을 타고 떠나는 머신 러닝 분류 모델 투어
3.1 분류 알고리즘 선택
3.2 사이킷런 첫걸음: 퍼셉트론 훈련
3.3 로지스틱 회귀를 사용한 클래스 확률 모델링
__3.3.1 로지스틱 회귀의 이해와 조건부 확률
__3.3.2 로지스틱 손실 함수의 가중치 학습
__3.3.3 아달린 구현을 로지스틱 회귀 알고리즘으로 변경
__3.3.4 사이킷런을 사용하여 로지스틱 회귀 모델 훈련
__3.3.5 규제를 사용하여 과대적합 피하기
3.4 서포트 벡터 머신을 사용한 최대 마진 분류
__3.4.1 최대 마진
__3.4.2 슬랙 변수를 사용하여 비선형 분류 문제 다루기
__3.4.3 사이킷런의 다른 구현
3.5 커널 SVM을 사용하여 비선형 문제 풀기
__3.5.1 선형적으로 구분되지 않는 데이터를 위한 커널 방법
__3.5.2 커널 기법을 사용하여 고차원 공간에서 분할 초평면 찾기
3.6 결정 트리 학습
__3.6.1 정보 이득 최대화: 자원을 최대로 활용
__3.6.2 결정 트리 만들기
__3.6.3 랜덤 포레스트로 여러 개의 결정 트리 연결
3.7 k-최근접 이웃: 게으른 학습 알고리즘
3.8 요약

4장. 좋은 훈련 데이터셋 만들기: 데이터 전처리
4.1 누락된 데이터 다루기
__4.1.1 테이블 형태 데이터에서 누락된 값 식별
__4.1.2 누락된 값이 있는 훈련 샘플이나 특성 제외
__4.1.3 누락된 값 대체
__4.1.4 사이킷런 추정기 API 익히기
4.2 범주형 데이터 다루기
__4.2.1 판다스를 사용한 범주형 데이터 인코딩
__4.2.2 순서가 있는 특성 매핑
__4.2.3 클래스 레이블 인코딩
__4.2.4 순서가 없는 특성에 원-핫 인코딩 적용
4.3 데이터셋을 훈련 데이터셋과 테스트 데이터셋으로 나누기
4.4 특성 스케일 맞추기
4.5 유용한 특성 선택
__4.5.1 모델 복잡도 제한을 위한 L1 규제와 L2 규제
__4.5.2 L2 규제의 기하학적 해석
__4.5.3 L1 규제를 사용한 희소성
__4.5.4 순차 특성 선택 알고리즘
4.6 랜덤 포레스트의 특성 중요도 사용
4.7 요약

5장. 차원 축소를 사용한 데이터 압축
5.1 주성분 분석을 통한 비지도 차원 축소
__5.1.1 주성분 분석의 주요 단계
__5.1.2 주성분 추출 단계
__5.1.3 총 분산과 설명된 분산
__5.1.4 특성 변환
__5.1.5 사이킷런의 주성분 분석
5.2 선형 판별 분석을 통한 지도 방식의 데이터 압축
__5.2.1 주성분 분석 vs 선형 판별 분석
__5.2.2 선형 판별 분석의 내부 동작 방식
__5.2.3 산포 행렬 계산
__5.2.4 새로운 특성 부분 공간을 위해 선형 판별 벡터 선택
__5.2.5 새로운 특성 공간으로 샘플 투영
__5.2.6 사이킷런의 LDA
5.3 비선형 차원 축소와 시각화
__5.3.1 비선형 차원 축소를 고려하는 이유는 무엇인가요?
__5.3.2 t-SNE를 사용한 데이터 시각화
5.4 요약

6장. 모델 평가와 하이퍼파라미터 튜닝의 모범 사례
6.1 파이프라인을 사용한 효율적인 워크플로
__6.1.1 위스콘신 유방암 데이터셋
__6.1.2 파이프라인으로 변환기와 추정기 연결
6.2 k-겹 교차 검증을 사용한 모델 성능 평가
__6.2.1 홀드아웃 방법
__6.2.2 k-겹 교차 검증
6.3 학습 곡선과 검증 곡선을 사용한 알고리즘 디버깅
__6.3.1 학습 곡선으로 편향과 분산 문제 분석
__6.3.2 검증 곡선으로 과대적합과 과소적합 조사
6.4 그리드 서치를 사용한 머신 러닝 모델 세부 튜닝
__6.4.1 그리드 서치를 사용한 하이퍼파라미터 튜닝
__6.4.2 랜덤 서치로 하이퍼파라미터 설정을 더 넓게 탐색하기
__6.4.3 SH 방식을 사용한 자원 효율적인 하이퍼파라미터 탐색
__6.4.4 중첩 교차 검증을 사용한 알고리즘 선택
6.5 여러 가지 성능 평가 지표
__6.5.1 오차 행렬
__6.5.2 분류 모델의 정밀도와 재현율 최적화
__6.5.3 ROC 곡선 그리기
__6.5.4 다중 분류의 성능 지표
__6.5.5 불균형한 클래스 다루기
6.6 요약

7장. 다양한 모델을 결합한 앙상블 학습
7.1 앙상블 학습
7.2 다수결 투표를 사용한 분류 앙상블
__7.2.1 간단한 다수결 투표 분류기 구현
__7.2.2 다수결 투표 방식을 사용하여 예측 만들기
__7.2.3 앙상블 분류기의 평가와 튜닝
7.3 배깅: 부트스트랩 샘플링을 통한 분류 앙상블
__7.3.1 배깅 알고리즘의 작동 방식
__7.3.2 배깅으로 Wine 데이터셋의 샘플 분류
7.4 약한 학습기를 이용한 에이다부스트
__7.4.1 부스팅 작동 원리
__7.4.2 사이킷런에서 에이다부스트 사용
7.5 그레이디언트 부스팅: 손실 그레이디언트 기반의 앙상블 훈련
__7.5.1 에이다부스트와 그레이디언트 부스팅 비교
__7.5.2 그레이디언트 부스팅 알고리즘 소개
__7.5.3 분류를 위한 그레이디언트 부스팅 알고리즘
__7.5.4 그레이디언트 부스팅 분류 예제
__7.5.5 XGBoost 사용하기
7.6 요약

8장. 감성 분석에 머신 러닝 적용
8.1 텍스트 처리용 IMDb 영화 리뷰 데이터 준비
__8.1.1 영화 리뷰 데이터셋 구하기
__8.1.2 영화 리뷰 데이터셋을 더 간편한 형태로 전처리
8.2 BoW 모델 소개
__8.2.1 단어를 특성 벡터로 변환
__8.2.2 tf-idf를 사용하여 단어 적합성 평가
__8.2.3 텍스트 데이터 정제
__8.2.4 문서를 토큰으로 나누기
8.3 문서 분류를 위한 로지스틱 회귀 모델 훈련
8.4 대용량 데이터 처리: 온라인 알고리즘과 외부 메모리 학습
8.5 잠재 디리클레 할당을 사용한 토픽 모델링
__8.5.1 LDA를 사용한 텍스트 문서 분해
__8.5.2 사이킷런의 LDA
8.6 요약

9장. 회귀 분석으로 연속적 타깃 변수 예측
9.1 선형 회귀
__9.1.1 단순 선형 회귀
__9.1.2 다중 선형 회귀
9.2 에임스 주택 데이터셋 탐색
__9.2.1 데이터프레임으로 에임스 주택 데이터셋 읽기
__9.2.2 데이터셋의 중요 특징 시각화
__9.2.3 상관관계 행렬을 사용한 분석
9.3 최소 제곱 선형 회귀 모델 구현
__9.3.1 경사 하강법으로 회귀 모델의 파라미터 구하기
__9.3.2 사이킷런으로 회귀 모델의 가중치 추정
9.4 RANSAC을 사용하여 안정된 회귀 모델 훈련
9.5 선형 회귀 모델의 성능 평가
9.6 회귀에 규제 적용
9.7 선형 회귀 모델을 다항 회귀로 변환
__9.7.1 사이킷런을 사용하여 다항식 항 추가
__9.7.2 에임스 주택 데이터셋을 사용한 비선형 관계 모델링
9.8 랜덤 포레스트를 사용하여 비선형 관계 다루기
__9.8.1 결정 트리 회귀
__9.8.2 랜덤 포레스트 회귀
9.9 요약

10장. 레이블되지 않은 데이터 다루기: 군집 분석
10.1 k-평균 알고리즘을 사용하여 유사한 객체 그룹핑
__10.1.1 사이킷런을 사용한 k-평균 군집
__10.1.2 k-평균++로 초기 클러스터 센트로이드를 똑똑하게 할당
__10.1.3 직접 군집 vs 간접 군집
__10.1.4 엘보우 방법을 사용하여 최적의 클러스터 개수 찾기
__10.1.5 실루엣 그래프로 군집 품질을 정량화
10.2 계층적인 트리로 클러스터 조직화
__10.2.1 상향식으로 클러스터 묶기
__10.2.2 거리 행렬에서 계층 군집 수행
__10.2.3 히트맵에 덴드로그램 연결
__10.2.4 사이킷런에서 병합 군집 적용
10.3 DBSCAN을 사용하여 밀집도가 높은 지역 찾기
10.4 요약

11장. 다층 인공 신경망을 밑바닥부터 구현
11.1 인공 신경망으로 복잡한 함수 모델링
__11.1.1 단일층 신경망 요약
__11.1.2 다층 신경망 구조
__11.1.3 정방향 계산으로 신경망 활성화 출력 계산
11.2 손글씨 숫자 분류
__11.2.1 MNIST 데이터셋 구하기
__11.2.2 다층 퍼셉트론 구현
__11.2.3 신경망 훈련 루프 코딩
__11.2.4 신경망 모델의 성능 평가
11.3 인공 신경망 훈련
__11.3.1 손실 함수 계산
__11.3.2 역전파 알고리즘 이해
__11.3.3 역전파 알고리즘으로 신경망 훈련
11.4 신경망의 수렴
11.5 신경망 구현에 관한 몇 가지 첨언
11.6 요약

12장. 파이토치를 사용한 신경망 훈련
12.1 파이토치와 훈련 성능
__12.1.1 성능 문제
__12.1.2 파이토치란?
__12.1.3 파이토치 학습 방법
12.2 파이토치 처음 시작하기
__12.2.1 파이토치 설치
__12.2.2 파이토치에서 텐서 만들기
__12.2.3 텐서의 데이터 타입과 크기 조작
__12.2.4 텐서에 수학 연산 적용
__12.2.5 chunk( ), stack( ), cat( ) 함수
12.3 파이토치 입력 파이프라인 구축
__12.3.1 텐서에서 파이토치 DataLoader 만들기
__12.3.2 두 개의 텐서를 하나의 데이터셋으로 연결
__12.3.3 셔플, 배치, 반복
__12.3.4 로컬 디스크에 있는 파일에서 데이터셋 만들기
__12.3.5 torchvision.datasets 라이브러리에서 데이터셋 로드
12.4 파이토치로 신경망 모델 만들기
__12.4.1 파이토치 신경망 모듈(torch.nn)
__12.4.2 선형 회귀 모델 만들기
__12.4.3 torch.nn과 torch.optim 모듈로 모델 훈련하기
__12.4.4 붓꽃 데이터셋을 분류하는 다층 퍼셉트론 만들기
__12.4.5 테스트 데이터셋에서 모델 평가하기
__12.4.6 훈련된 모델 저장하고 로드하기
12.5 다층 신경망의 활성화 함수 선택
__12.5.1 로지스틱 함수 요약
__12.5.2 소프트맥스 함수를 사용한 다중 클래스 확률 예측
__12.5.3 하이퍼볼릭 탄젠트로 출력 범위 넓히기
__12.5.4 렐루 활성화 함수
12.6 요약

13장. 파이토치 구조 자세히 알아보기
13.1 파이토치의 주요 특징
13.2 파이토치의 계산 그래프
__13.2.1 계산 그래프 이해
__13.2.2 파이토치로 그래프 만들기
13.3 모델 파라미터를 저장하고 업데이트하기 위한 파이토치 텐서 객체
13.4 자동 미분으로 그레이디언트 계산
__13.4.1 훈련 가능한 변수에 대한 손실의 그레이디언트 계산
__13.4.2 자동 미분 이해하기
__13.4.3 적대 샘플
13.5 torch.nn 모듈을 사용하여 일반적인 아키텍처 구현하기
__13.5.1 nn.Sequential 기반의 모델 구현하기
__13.5.2 손실 함수 선택하기
__13.5.3 XOR 분류 문제 풀어 보기
__13.5.4 nn.Module로 유연성이 높은 모델 만들기
__13.5.5 파이토치에서 사용자 정의 층 만들기
13.6 프로젝트 1: 자동차 연비 예측하기
__13.6.1 특성 열 사용
__13.6.2 DNN 회귀 모델 훈련하기
13.7 프로젝트 2: MNIST 손글씨 숫자 분류하기
13.8 고수준 파이토치 API: 파이토치 라이트닝 소개
__13.8.1 파이토치 라이트닝 모델 준비하기
__13.8.2 라이트닝을 위한 데이터 로더 준비하기
__13.8.3 라이트닝 Trainer 클래스를 사용하여 모델 훈련하기
__13.8.4 텐서보드로 모델 평가하기
13.9 요약

14장. 심층 합성곱 신경망으로 이미지 분류
14.1 합성곱 신경망의 구성 요소
__14.1.1 CNN과 특성 계층 학습
__14.1.2 이산 합성곱 수행
__14.1.3 서브샘플링
14.2 기본 구성 요소를 사용하여 심층 합성곱 신경망 구성
__14.2.1 여러 개의 입력 또는 컬러 채널 다루기
__14.2.2 L2 규제와 드롭아웃으로 신경망 규제
__14.2.3 분류를 위한 손실 함수
14.3 파이토치를 사용하여 심층 합성곱 신경망 구현
__14.3.1 다층 CNN 구조
__14.3.2 데이터 적재와 전처리
__14.3.3 torch.nn 모듈을 사용하여 CNN 구현
14.4 합성곱 신경망을 사용하여 웃는 얼굴 분류
__14.4.1 CelebA 데이터셋 로드
__14.4.2 이미지 변환과 데이터 증식
__14.4.3 CNN 웃는 얼굴 분류기 훈련
14.5 요약

15장. 순환 신경망으로 순차 데이터 모델링
15.1 순차 데이터 소개
__15.1.1 순차 데이터 모델링: 순서를 고려한다
__15.1.2 순차 데이터 vs 시계열 데이터
__15.1.3 시퀀스 표현
__15.1.4 시퀀스 모델링의 종류
15.2 시퀀스 모델링을 위한 RNN
__15.2.1 RNN 반복 구조 이해
__15.2.2 RNN의 활성화 출력 계산
__15.2.3 은닉 순환과 출력 순환
__15.2.4 긴 시퀀스 학습의 어려움
__15.2.5 LSTM 셀
15.3 파이토치로 시퀀스 모델링을 위한 RNN 구현
__15.3.1 첫 번째 프로젝트: IMDb 영화 리뷰의 감성 분석
__15.3.2 두 번째 프로젝트: 텐서플로로 글자 단위 언어 모델 구현
15.4 요약

16장. 트랜스포머: 어텐션 메커니즘을 통한 자연어 처리 성능 향상
16.1 어텐션 메커니즘이 추가된 RNN
__16.1.1 RNN의 정보 검색을 돕는 어텐션
__16.1.2 RNN을 위한 원본 어텐션 메커니즘
__16.1.3 양방향 RNN으로 입력 처리하기
__16.1.4 문맥 벡터에서 출력 생성하기
__16.1.5 어텐션 가중치 계산하기
16.2 셀프 어텐션 메커니즘 소개
__16.2.1 기본적인 형태의 셀프 어텐션
__16.2.2 훈련 가능한 셀프 어텐션 메커니즘: 스케일드 점곱 어텐션
16.3 어텐션이 필요한 전부다: 원본 트랜스포머 아키텍처
__16.3.1 멀티 헤드 어텐션으로 문맥 임베딩 인코딩하기
__16.3.2 언어 모델 학습: 디코더와 마스크드 멀티 헤드 어텐션
__16.3.3 구현 세부 사항: 위치 인코딩 및 층 정규화
16.4 레이블이 없는 데이터를 활용하여 대규모 언어 모델 구축
__16.4.1 트랜스포머 모델 사전 훈련 및 미세 튜닝
__16.4.2 GPT로 레이블이 없는 데이터 활용하기
__16.4.3 GPT-2를 사용하여 새로운 텍스트 생성
__16.4.4 BERT를 통한 양방향 사전 훈련
__16.4.5 두 장점을 합친 BART
16.5 파이토치에서 BERT 모델 미세 튜닝하기
__16.5.1 IMDb 영화 리뷰 데이터셋 로드
__16.5.2 데이터셋 토큰화 715
__16.5.3 사전 훈련된 BERT 모델 로드 및 미세 튜닝하기
__16.5.4 트레이너 API를 사용하여 트랜스포머를 간편하게 미세 튜닝하기
16.6 요약

17장. 새로운 데이터 합성을 위한 생성적 적대 신경망
17.1 생성적 적대 신경망 소개
__17.1.1 오토인코더
__17.1.2 새로운 데이터 합성을 위한 생성 모델
__17.1.3 GAN으로 새로운 샘플 생성
__17.1.4 GAN의 생성자와 판별자 손실 함수 이해
17.2 밑바닥부터 GAN 모델 구현
__17.2.1 구글 코랩에서 GAN 모델 훈련
__17.2.2 생성자와 판별자 신경망 구현
__17.2.3 훈련 데이터셋 정의
__17.2.4 GAN 모델 훈련하기
17.3 합성곱 GAN과 바서슈타인 GAN으로 합성 이미지 품질 높이기
__17.3.1 전치 합성곱
__17.3.2 배치 정규화
__17.3.3 생성자와 판별자 구현
__17.3.4 두 분포 사이의 거리 측정
__17.3.5 GAN에 EM 거리 사용
__17.3.6 그레이디언트 페널티
__17.3.7 WGAN-GP로 DCGAN 모델 훈련
__17.3.8 모드 붕괴
17.4 다른 GAN 애플리케이션
17.5 요약

18장. 그래프 구조 데이터의 의존성 감지를 위한 그래프 신경망
18.1 그래프 데이터 소개
__18.1.1 비유향 그래프
__18.1.2 유향 그래프
__18.1.3 레이블 그래프
__18.1.4 분자를 그래프로 표현하기
18.2 그래프 합성곱의 이해
__18.2.1 그래프 합성곱의 사용 동기
__18.2.2 기본 그래프 합성곱 구현
18.3 파이토치에서 GNN을 밑바닥부터 구현하기
__18.3.1 NodeNetwork 모델 정의하기
__18.3.2 NodeNetwork의 그래프 합성곱 층 만들기
__18.3.3 다양한 그래프 크기를 처리하기 위해 전역 풀링 층 추가하기
__18.3.4 데이터 로더 준비
__18.3.5 노드 네트워크를 사용하여 예측하기
18.4 파이토치 지오메트릭 라이브러리를 사용하여 GNN 구현하기
18.5 기타 GNN 층 및 최근 개발 사항
__18.5.1 스펙트럼 그래프 합성곱
__18.5.2 풀링
__18.5.3 정규화
__18.5.4 그 외 고급 그래프 신경망
18.6 요약

19장. 강화 학습으로 복잡한 환경에서 의사 결정
19.1 경험에서 배운다
__19.1.1 강화 학습 이해
__19.1.2 강화 학습 시스템의 에이전트-환경 인터페이스 정의
19.2 강화 학습의 기초 이론
__19.2.1 마르코프 결정 과정
__19.2.2 마르코프 결정 과정의 수학 공식
__19.2.3 강화 학습 용어: 대가, 정책, 가치 함수
__19.2.4 벨먼 방정식을 사용한 동적 계획법
19.3 강화 학습 알고리즘
__19.3.1 동적 계획법
__19.3.2 몬테카를로를 사용한 강화 학습
__19.3.3 시간 차 학습
19.4 첫 번째 강화 학습 알고리즘 구현
__19.4.1 OpenAI 짐 툴킷 소개
__19.4.2 Q-러닝으로 그리드 월드 문제 풀기
19.5 심층 Q-러닝
__19.5.1 Q-러닝 알고리즘에 따라 DQN 모델 훈련
__19.5.2 심층 Q-러닝 알고리즘 구현
19.6 전체 요약

작가정보

위스콘신-매디슨 대학교의 통계학 조교수로 머신 러닝과 딥러닝에 중점을 두고 있다. 그의 최근 연구는 제한된 데이터로 작업하기 위한 퓨-샷(few-shot) 학습과 순서가 있는 타깃에 대한 심층 신경망 개발과 같은 일반적인 문제에 초점이 맞춰져 있다. 또한, 오픈 소스 기여자로도 활발히 활동 중이며, Grid.ai의 수석 AI 교육자라는 새로운 역할을 통해 사람들이 머신 러닝과 AI에 입문할 수 있도록 돕는 데 열정을 쏟을 계획이다./컴퓨터 비전 애플리케이션에 중점을 둔 딥러닝 연구자이다. 미시간 주립대학교에서 기계 공학과 컴퓨터 공학으로 박사 학위를 받았으며, 박사 과정 중에 실전 문제를 해결하기 위한 새로운 컴퓨터 비전 알고리즘을 개발했으며 컴퓨터 비전 커뮤니티에서 많이 인용되는 여러 논문을 발표했다./구글의 머신 러닝 소프트웨어 엔지니어로, 여러 데이터 기반 분야에서 머신 러닝 과학자로 일해 왔으며, 여러 권의 머신 러닝 서적을 저술했다. 그의 첫 번째 저서인 『Python Machine Leaing By Example』는 2017년과 2018년에 아마존에서 해당 카테고리 베스트셀러 1위를 차지했으며 여러 언어로 번역되었다./기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했다. 텐서 플로우 블로그(tensorflow.blog)를 운영하고 있고, 머신 러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있다. 『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023), 『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했고, 『핸즈온 머신러닝 3판』(한빛미디어, 2023), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022),『머신 러닝 교과서 3판』(길벗, 2021)을 포함하여 여러 권의 책을 우리말로 옮겼다.

작가의 말

여러분이 뛰어난 문제 해결 전문가로서 머신 러닝 기술자가 되기를 원하거나 머신 러닝 연구 분야에서 경험을 쌓기를 고려한다면 이 책이 도움이 될 것입니다. 초보자는 머신 러닝의 이론적 배경에 압도될 수 있습니다. 최근에 출간된 활용서들을 보면 고성능 학습 알고리즘을 구현하면서 머신 러닝을 배울 수 있을 것입니다.
실용적인 코드 예제와 머신 러닝 애플리케이션 예제를 다루어 보는 것이 이 분야를 시작하는 좋은 방법입니다. 배운 것을 구체적인 예제로 실제 만들어 보면 광범위한 개념을 이해하는 데 도움이 됩니다. 하지만 좋은 만큼 책임도 뒤따른다는 것을 잊지 마세요! 책에서는 파이썬 프로그래밍 언어와 파이썬 기반의 머신 러닝 라이브러리를 사용하여 머신 러닝을 실습해 볼 수 있습니다. 거기에 더해서 머신 러닝 알고리즘의 수학적 이론을 소개합니다. 성공적으로 머신 러닝을 사용하기 위해 꼭 필요한 부분입니다. 따라서 책은 다른 활용서와는 달리 필수적인 머신 러닝 이론을 설명합니다. 또한, 머신 러닝 알고리즘의 작동 방식과 사용 방법, 특히 빠지기 쉬운 실수를 피하는 방법을 쉽고 알차게 설명합니다.
이 책에서는 이 분야에서 첫걸음을 떼는 데 필요한 핵심 주제와 개념을 다룹니다. 더 많은 지식을 배우고 싶다면 이 책에서 소개한 자료를 참고하여 이 분야의 중요한 혁신 기술들을 따라 갈 수 있을 것입니다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    머신러닝 교과서 : 파이토치 편 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    머신러닝 교과서 : 파이토치 편 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    머신러닝 교과서 : 파이토치 편
    탄탄한 이론과 다양한 예제로 배우는 머신 러닝/딥러닝 실전 가이드
    저자 모두보기
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)