텐서플로로 배우는 딥러닝
2018년 12월 12일 출간
국내도서 : 2018년 11월 16일 출간
- eBook 상품 정보
- 파일 정보 PDF (23.08MB)
- ISBN 9788931458398
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 16,200원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
책의 초반에는 선형 대수, 확률 통계, 최적화 이론과 같은 수학적 이론을 설명하고, 딥러닝 알고리즘의 기본 구조인 ANN, 오토인코더, CNN, RNN을 다룹니다. 중반에는 앞에서 배운 ANN, CNN, RNN 구조를 이미지 캡셔닝, Semantic Image Segmentation 문제에 어떻게 응용하는지를 설명합니다. 책의 후반에는 최근에 인기 있는 주제인 생성 모델과 강화 학습의 개념을 살펴보고, 파인 튜닝과 사전 학습된 모델을 이용해서 실제 문제를 해결하는 방법을 배웁니다. 1권의 책으로 딥러닝 기초 이론부터 텐서플로 라이브러리를 이용한 실제 구현까지 모두 파악할 수 있습니다.
책에 등장하는 예제 파일은 다음 주소에서 확인하시기 바랍니다.
https://github.com/solaris33/deep-learning-tensorflow-book-code
1.1 딥러닝 알고리즘의 등장배경
1.2 지도 학습
1.3 비지도 학습
1.4 강화 학습
1.5 정리
2. 텐서플로 소개
2.1 텐서플로 설치 및 책에서 사용하는 소스 코드 다운로드
2.1.1 텐서플로 소개
2.1.2 텐서플로 설치
2.1.3 책에서 사용하는 소스 코드 다운로드
2.2 딥러닝, 텐서플로 응용 분야
2.2.1 컴퓨터 비전
2.2.2 자연어 처리
2.2.3 음성 인식
2.2.4 게임
2.2.5 생성 모델
2.3 텐서플로 추상화 라이브러리들
2.3.1 케라스
2.3.2 TF-Slim
2.3.3 Sonnet
2.4 정리
3. 텐서플로 기초와 텐서보드
3.1 텐서플로 기초 - 그래프 생성과 그래프 실행
3.2 플레이스홀더
3.3 선형회귀 및 경사하강법 알고리즘
3.3.1 머신러닝의 기본 프로세스 - 가설 정의, 손실 함수 정의, 최적화 정의
3.3.2 선형 회귀 알고리즘 구현 및 변수
3.4 텐서보드를 이용한 그래프 시각화
3.5 정리
4. 머신러닝 기초 이론들
4.1 Batch Gradient Descent, Mini-Batch Gradient Descent, Stochastic Gradient Descent
4.2 Training Data, Validation Data, Test Data 및 오버피팅
4.3 소프트맥스 회귀
4.3.1 소프트맥스 회귀
4.3.2 크로스 엔트로피 손실 함수
4.3.3 MNIST 데이터셋
4.3.4 One-hot Encoding
4.4 소프트맥스 회귀를 이용한 MNIST 숫자 분류기 구현
4.4.1 mnist_classification_using_softmax_regression.py
4.4.2 tf_nn_sparse_softmax_cross_entropy_with_logits_example.py
4.5 정리
5. 인공신경망(ANN)
5.1 인공신경망의 등장 배경
5.2 퍼셉트론
5.3 다층퍼셉트론 MLP
5.4 오류역전파 알고리즘
5.5 ANN을 이용한 MNIST 숫자 분류기 구현
5.6 정리
6. 오토인코더(AutoEncoder)
6.1 오토인코더의 개념
6.2 오토인코더를 이용한 MNIST 데이터 재구축
6.3 오토인코더와 소프트맥스 분류기를 이용한 MNIST 분류기 구현
6.3.1 파인 튜닝과 전이 학습
6.3.2 오토인코더와 소프트맥스 분류기를 이용한 MNIST 숫자 분류기 구현
6.4 정리
7. 컨볼루션 신경망(CNN)
7.1 컨볼루션 신경망의 개념 - 컨볼루션, 풀링
7.2 MNIST 숫자 분류를 위한 CNN 분류기 구현
7.3 CNN을 이용한 CIFAR-10 이미지 분류기 구현
7.3.1 CIFAR-10 데이터셋
7.3.2 드롭아웃
7.3.3 CNN을 이용한 CIFAR-10 이미지 분류기 구현
7.4 대표적인 CNN 모델들 - AlexNet, VGGNet, GoogLeNet, ResNet
7.4.1 AlexNet
7.4.2 VGGNet
7.4.3 GoogLeNet(Inception v1)
7.4.4 ResNet
7.5 tf.train.Saver API를 이용해서 모델과 파라미터를 저장하고 불러오기
7.6 정리
8. 순환신경망(RNN)
8.1 순환신경망
8.2 LSTM(장/단기 기억 네트워크)와 경사도 사라짐 문제
8.3 GRU
8.4 임베딩
8.4.1 임베딩의개념
8.4.2 tf.nn.embedding_lookup을 이용한 임베딩 구현
8.5 경사도 증가 문제와 경사도 자르기
8.6 Char-RNN
8.6.1 Char-RNN의 개념
8.6.2 텐서플로를 이용한 Char-RNN 구현
8.6.2.1 train_and_sampling.py
8.6.2.2 utils.py
8.7 정리
9. 이미지 캡셔닝(Image Captioning)
9.1 이미지 캡셔닝 문제 소개
9.2 이미지 캡셔닝 데이터셋 - MS COCO
9.3 이미지 캡셔닝 구현 - im2txt
9.4 im2txt 코드 구조에 대한 설명 및 코드 실행 방법
9.4.1 train.py
9.4.2 show_and_tell_model.py
9.4.3 run_inference.py
9.5 정리
10. Semantic Image Segmentation
10.1 Semantic Image Segmentation 개념
10.2 FCN
10.3 Semantic Image Segmentation을 위한 데이터셋 - MIT Scene Parsing
10.4 FCN을 이용한 Semantic Image Segmentation 구현 - FCN.tensorflow
10.4.1 FCN.py
10.4.2 TensorflowUtils.py
10.4.3 read_MITSceneParsingData.py
10.4.4 BatchDatsetReader.py
10.5 정리
11. 생성 모델 - GAN
11.1 생성 모델의 개념
11.2 GAN의 개념
11.3 GAN을 이용한 MNIST 데이터 생성
11.4 정리
12. 강화 학습(Reinforcement Learning)
12.1 강화 학습의 기본 개념과 MDP
12.1.1 상태 가치 함수
12.1.2 행동 가치 함수
12.2 Q-Learning
12.2.1 Q-Table과 Q-Networks
12.2.2 ∈-Greedy
12.3 DQN
12.4 DQN을 이용한 게임 에이전트 구현 - CatchGame
12.4.1 train_catch_game.py
12.4.2 play_catch_game.ipynb
12.5 정리
13. 파인 튜닝과 사전 학습된 모델을 이용한 실제 문제 해결
13.1 파인 튜닝 및 전이 학습 기법 리뷰
13.2 Inception v3 Retraining을 이용한 나만의 분류기
13.2.1 Inception v3 모델
13.2.2 inceptionv3_retrain.py - 나만의 데이터셋으로 파인 튜닝
13.2.3 inceptionv3_retrain.py
13.2.4 inceptionv3_inference.py
13.3 사전 학습된 모델을 이용한 물체 검출 수행
13.3.1 물체 검출의 개념
13.3.2 사전 학습된 Faster
작가정보
저자(글) 솔라리스
서울대학교 인공지능 및 컴퓨터 비전 연구실에서 석사학위를 받았습니다. 텐서플로와 인공지능, 머신러닝, 딥러닝을 관련 내용을 포스팅하는 “솔라리스의 인공지능 연구실”(solarisailab.com)이라는 블로그를 운영 중입니다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)