본문 바로가기

추천 검색어

실시간 인기 검색어

머신러닝(2학기, 워크북포함)

이관용 , 박혜영 지음
한국방송통신대학교출판문화원

2022년 08월 29일 출간

국내도서 : 2022년 07월 25일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 pdf (49.02MB)
ISBN 9788920044076
쪽수 506쪽
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장

정가 18,000

5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

인간의 지능적인 정보처리를 모방하거나 더 나아가 이를 대신할 수 있는 기계가 여 러 모양으로 개발되어 활용되고 있는데, 이를 위한 기본적인 방법론을 제공하는 인공 지능의 한 분야가 머신러닝(기계학습)이다. 머신러닝에 관심을 두고 이를 자신의 분야 에 적용하기 위해서는 각 방법론에 대한 개별적인 이해는 물론이고, 개발 목적과 환 경에 따른 다양한 상황을 종합적으로 이해하고 판단하는 것이 필요하다. 이를 위해 무엇보다도 중요한 것은 머신러닝 기법에 대한 단단한 기초와 폭넓은 이해라고 할 수 있다. 이런 목적에 맞추어 이 교재는 머신러닝 분야의 특정 주제를 심도 있게 다루기 보다는 머신러닝 전반에 걸쳐 접하거나 알아야 하는 내용을 소개한다. 즉, 기초적이고 전통적인 방법론부터 최신 기술에 이르기까지 다양한 방법론의 개념과 원리 및 그에 따른 기본적인 알고리즘을 최대한 체계적으로 다루려고 하였다.

이 교재는 총 14장으로 구성된다.
ㆍ1장: 머신러닝과 관련된 기초 개념과 용어를 소개한다.
ㆍ2~3장: 머신러닝을 위해서는 다양한 수학적인 지식이 필요하다. 주로 사용되는 선형대수, 확률, 통계를 비롯하여 응용에 따라서는 미분기하학, 미분방정식 등 다 양한 내용이 필요하다. 하지만 여기서는 벡터와 행렬, 그리고 확률과 통계에 관련 된 기초 개념을 다시 살펴볼 수 있도록 소개한다.
ㆍ4~7장: 머신러닝에서 다루는 네 가지 주제인 분류, 회귀, 군집화, 특징추출과 관 련된 주요 기법에 대해 살펴본다.
ㆍ8~10장: 장별로 앙상블 학습, 결정 트리와 랜덤 포레스트, SVM에 대해 다룬다.
ㆍ11~14장: 신경망과 이를 기반으로 발전된 형태의 머신러닝 기법인 딥러닝, 그리 고 강화학습에 대해 학습한다.
제1장 머신러닝 소개
1.1 머신러닝의 개념
1.2 머신러닝의 처리 과정
1.3 머신러닝의 기본 요소
1.4 머신러닝에서의 주제
1.5 학습 시스템 관련 개념

제2장 데이터 표현: 벡터와 행렬
2.1 벡 터
2.2 행 렬

제3장 데이터 분포: 확률과 통계
3.1 확률변수와 확률분포함수
3.2 랜덤벡터와 통계량

제4장 지도학습: 분류
4.1 분류의 개념
4.2 베이즈 분류기
4.3 K-최근접이웃 분류기

제5장 지도학습: 회귀
5.1 회귀의 개념
5.2 선형회귀
5.3 선형회귀의 확장
5.4 로지스틱 회귀

제6장 비지도학습: 군집화
6.1 군집화의 개념
6.2 K-평균 군집화
6.3 계층적 군집화

제7장 데이터 표현: 특징추출
7.1 선형변환에 의한 특징추출
7.2 주성분분석법
7.3 선형판별분석법
7.4 거리 기반 차원 축소 방법

제8장 앙상블 학습
8.1 앙상블 학습의 개념
8.2 배깅과 보팅
8.3 부스팅
8.4 결합 방법


제9장 결정 트리와 랜덤 포레스트
9.1 결정 트리
9.2 랜덤 포레스트

제10장 SVM과 커널법
10.1 선형 분류기
10.2 SVM 분류기
10.3 커널법

제11장 신경망
11.1 신경망 개요
11.2 다층 퍼셉트론
11.3 학습 알고리즘

제12장 딥러닝
12.1 딥러닝의 등장
12.2 학습 성능 향상을 위한 기법
12.3 합성곱 신경망(CNN)
12.4 순환 신경망(RNN)

제13장 딥러닝 응용
13.1 컴퓨터비전
13.2 자연어처리

제14장 강화학습
14.1 강화학습의 개요
14.2 Q-학습과 심층 Q-신경망

작가정보

저자(글) 이관용

저자 : 이관용
연세대학교 전산과학과(이학사)
연세대학교 대학원 전산과학과(이학박사)
일본 도쿄대학 방문연구원
ㆍ현재: 한국방송통신대학교 컴퓨터과학과 교수

저자 : 박혜영
연세대학교 전산과학과(이학사)
연세대학교 대학원 컴퓨터ㆍ산업시스템공학과(공학박사)
일본 이화학연구소 뇌과학연구센터 연구원
ㆍ현재: 경북대학교 컴퓨터학부 교수

저자(글) 박혜영

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    머신러닝(2학기, 워크북포함) 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    머신러닝(2학기, 워크북포함) 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    머신러닝(2학기, 워크북포함)
    저자 모두보기
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)