개발자를 위한 머신러닝&딥러닝
2022년 09월 02일 출간
국내도서 : 2022년 08월 24일 출간
- eBook 상품 정보
- 파일 정보 pdf (9.40MB)
- ISBN 9791169216128
- 쪽수 465쪽
- 지원기기 교보eBook App, PC e서재, 리더기
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 24,480원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
코드 실습형 머신러닝 가이드북
인공지능 기술 도입률이 늘면서 개발자에게 필요한 역량도 높아지고 있다. 산업을 획기적으로 변화시키는 인공지능, 어떻게 하면 현명하고 실속 있게 마스터할 수 있을까? 이 책의 목표는 개발자가 마주하게 될 다양한 문제를 머신러닝으로 해결하는 방법을 안내하고, 머신러닝과 인공지능 개발자로 레벨 업할 수 있도록 돕는 것이다.
수만 명이 선택한 온라인 강좌 기반으로 내용을 구성했고, 복잡하거나 어려운 수식은 다루지 않으며 다양한 예제 코드를 실습하면서 주요 개념을 배워본다. 머신러닝 세계에서 만나게 될 다양한 시나리오를 구현해보고, 컴퓨터 비전, 자연어 처리, 웹, 모바일, 클라우드 및 임베디드 런타임을 위한 시퀀스 모델링도 소개한다. 이 책을 읽고 나면 여러분은 곧 파이썬과 텐서플로로 머신러닝과 인공지능의 세계를 자유롭게 유영하는 인공지능 개발자로 업그레이드하게 될 것이다.
CHAPTER 1 텐서플로 소개
1.1 머신러닝이란
1.2 전통적인 프로그래밍의 한계
1.3 프로그래밍에서 학습으로
1.4 텐서플로란
1.5 텐서플로 사용하기
1.6 머신러닝 시작하기
1.7 마치며
CHAPTER 2 컴퓨터 비전 소개
2.1 의류 아이템 인식하기
2.2 컴퓨터 비전을 위한 뉴런
2.3 신경망 설계
2.4 신경망 훈련하기
2.5 모델 출력 살펴보기
2.6 더 오래 훈련하기: 과대적합
2.7 훈련 조기 종료
2.8 마치며
CHAPTER 3 고급 컴퓨터 비전: 이미지에서 특징 감지하기
3.1 합성곱
3.2 풀링
3.3 합성곱 신경망 만들기
3.4 합성곱 신경망 살펴보기
3.5 말과 사람을 구별하는 CNN 만들기
3.6 이미지 증식
3.7 전이 학습
3.8 다중 분류
3.9 드롭아웃 규제
3.10 마치며
CHAPTER 4 텐서플로 데이터셋으로 공개 데이터셋 사용하기
4.1 텐서플로 데이터셋 시작하기
4.2 케라스 모델에서 텐서플로 데이터셋 사용하기
4.3 데이터 증식을 위해 매핑 함수 사용하기
4.4 사용자 정의 분할 사용하기
4.5 TFRecord 이해하기
4.6 텐서플로에서 데이터 관리를 위한 ETL 프로세스
4.7 마치며
CHAPTER 5 자연어 처리 소개
5.1 언어를 숫자로 인코딩하기
5.2 불용어 제거와 텍스트 정제
5.3 실제 데이터 다루기
5.4 마치며
CHAPTER 6 임베딩을 사용한 감성 프로그래밍
6.1 단어의 의미 구축하기
6.2 텐서플로의 임베딩
6.3 임베딩 시각화
6.4 텐서플로 허브에서 사전 훈련된 임베딩 사용하기
6.5 마치며
CHAPTER 7 자연어 처리를 위한 순환 신경망
7.1 순환 구조
7.2 순환을 언어로 확장하기
7.3 RNN으로 텍스트 분류기 만들기
7.4 RNN에 사전 훈련된 임베딩 사용하기
7.5 마치며
CHAPTER 8 텐서플로로 텍스트 생성하기
8.1 시퀀스를 입력 시퀀스로 변환하기
8.2 모델 만들기
8.3 텍스트 생성하기
8.4 데이터셋 확장하기
8.5 모델 구조 바꾸기
8.6 데이터 개선하기
8.7 문자 기반 인코딩
8.8 마치며
CHAPTER 9 시퀀스와 시계열 데이터 이해하기
9.1 시계열의 공통 특징
9.2 시계열 예측 기법
9.3 마치며
CHAPTER 10 시퀀스를 예측하는 머신러닝 모델 만들기
10.1 윈도 데이터셋 만들기
10.2 DNN을 만들고 시퀀스 데이터로 훈련하기
10.3 DNN의 결과 평가하기
10.4 전반적인 예측 살펴보기
10.5 학습률 튜닝하기
10.6 케라스 튜너로 하이퍼파라미터 튜닝하기
10.7 마치며
CHAPTER 11 시퀀스 모델을 위한 합성곱 신경망과 순환 신경망
11.1 시퀀스 데이터를 위한 합성곱
11.2 NASA 날씨 데이터 사용하기
11.3 RNN으로 시퀀스 모델링하기
11.4 다른 순환 층
11.5 드롭아웃 사용하기
11.6 양방향 RNN 사용하기
11.7 마치며
[PART II 모델 사용]
CHAPTER 12 텐서플로 라이트 소개
12.1 텐서플로 라이트란
12.2 훈련된 모델을 텐서플로 라이트로 변환하기
12.3 전이 학습으로 만든 이미지 분류기를 텐서플로 라이트로 변환하기
12.4 마치며
CHAPTER 13 안드로이드 앱에서 텐서플로 라이트 사용하기
13.1 안드로이드 스튜디오란
13.2 첫 번째 텐서플로 라이트 안드로이드 앱 만들기
13.3 이미지를 처리하는 앱 만들기
13.4 텐서플로 라이트 샘플 앱(안드로이드용)
13.5 마치며
CHAPTER 14 iOS 앱에서 텐서플로 라이트 사용하기
14.1 Xcode로 첫 번째 텐서플로 라이트 앱 만들기
14.2 한 걸음 더: 이미지 처리하기
14.3 텐서플로 라이트 샘플 앱(iOS용)
14.4 마치며
CHAPTER 15 TensorFlow.js 소개
15.1 TensorFlow.js란
15.2 브래킷츠 설치하고 실행하기
15.3 첫 번째 TensorFlow.js 모델 만들기
15.4 붓꽃 분류기 만들기
15.5 마치며
CHAPTER 16 TensorFlow.js에서 컴퓨터 비전 모델 훈련하기
16.1
인공지능 4대 석학 앤드루 응이 추천하는
개발자의, 개발자에 의한, 개발자를 위한 머신러닝 가이드북
바야흐로 인공지능의 시대! 인공지능 기술은 급성장해왔고 금융, 교육, 유통, 제조업 등 다양한 산업에서 앞다투어 인공지능을 도입하고 있습니다. 시대 흐름에 발맞춰 인공지능 관련 교육은 다양화되고 교육에 참여하는 연령층도 점점 낮아지고 있지만, 여전히 머신러닝, 딥러닝 첫걸음을 떼기 어려워하는 개발자가 많습니다. 인공지능을 제대로 배우고 싶은데 복잡한 수식이 부담인 개발자라면, 어려운 이론 없이 파이썬 코드로 머신러닝을 시작해보고 싶은 개발자라면 이 책과 함께 머신러닝 세계에 첫발을 내디딜 차례입니다!
이 책은 개발자의 입장에서 머신러닝과 텐서플로가 무엇인지 설명하고 실습을 위한 텐서플로 설치법을 안내합니다. 간단한 모델을 직접 구현해보고 패션 MNIST, 말-사람, 가위, 바위, 보, Sarcasm, 강아지-고양이 데이터셋 등 다양한 데이터셋을 활용해 머신러닝, 딥러닝 모델을 구축해봅니다. 이 책은 컴퓨터 비전, 합성곱, 순환 신경망은 물론 텐서플로 라이트, TensorFlow.js, 텐서플로 서빙까지 다루는 ‘개발자를 위한 머신러닝 종합 선물 세트’입니다. 명확하고 실용적인 개념 설명과 예제 코드로 차근차근 머신러닝을 배워보세요. 인공지능 개발자로 레벨 업할 여러분을 응원합니다.
대상 독자
● 머신러닝, 시작하고 싶은데 어떻게 시작해야 할지 막막한 개발자
● 어려운 수학이나 이론 없이 파이썬 코드로 직접 실행해보며 머신러닝 개념을 체득하고 싶은 누구나
주요 내용
● 텐서플로로 다양한 모델 구조 만들어보기
● 하나의 뉴런을 가진 신경망으로 모델 구축하기
● 컴퓨터 비전으로 이미지의 특성 감지하기
● 자연어 처리로 단어와 문장을 토큰화하고 순서 지정하기
● 텐서플로 라이트로 모바일 기기에서 모델 사용하기
● 텐서플로 서빙으로 웹이나 클라우드에 모델 배포하기
작가정보
저자 : 로런스 모로니
Laurence Moroney
구글의 인공지능 개발 지원 팀(advocacy) 리더. 소프트웨어 개발자가 머신러닝으로 인공지능 시스템을 구축할 수 있도록 교육하는 것이 목표입니다. 텐서플로 유튜브 채널(youtube.com/tensorflow)에 영상을 자주 올리며, 국제적으로 유명한 기조 연설자입니다. 수많은 책과 각본을 저술한 작가이기도 하며 그중 SF 소설 몇 권이 베스트셀러에 오르기도 했습니다. 워싱턴주 사마미시에 거주하며 지독한 커피홀릭입니다.
역자 : 박해선
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. 텐서 플로우 블로그(tensorflow.blog)를 운영하고 있고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다.
『혼자 공부하는 머신러닝+딥러닝』(한빛미디어, 2020), 『Do it! 딥러닝 입문』(이지스퍼블리싱,2019)을 집필했습니다. 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『파이썬 라이브러리를 활용한 머신러닝(번역개정2판)』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로(개정3판)』(길벗, 2021), 『딥러닝 일러스트레이티드』(시그마프레스, 2021), 『GAN 인 액션』(한빛미디어, 2020), 『핸즈온 머신러닝(2판)』(한빛미디어, 2020), 『미술관에 GAN 딥러닝 실전 프로젝트』(한빛미디어, 2019), 『파이썬을 활용한 머신러닝 쿡북』(한빛미디어, 2019), 『케라스 창시자에게 배우는 딥러닝』(길벗, 2018)을 포함하여 여러 권의 책을 우리말로 옮겼습니다.
번역 박해선
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)