본문 바로가기

추천 검색어

실시간 인기 검색어

선형대수와 통계학으로 배우는 머신러닝 with 파이썬

최적화 개념부터 텐서플로를 활용한 딥러닝까지
장철원 지음
비제이퍼블릭

2021년 01월 21일 출간

종이책 : 2021년 01월 26일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 pdf (55.58MB)
ISBN 9791165920425
쪽수 625쪽
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 전자책 화면에 표기된 주석 등을 모두 읽어 줍니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
  • '교보 ebook' 앱을 최신 버전으로 설치해야 이용 가능합니다. (Android v3. 0.26, iOS v3.0.09,PC v1.2 버전 이상)

PDF 필기 Android 가능 (iOS예정)
소득공제
소장
정가 : 30,000원

쿠폰적용가 27,000

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 300원

작품소개

이 상품이 속한 분야

머신러닝에 필요한 선형대수, 통계학, 최적화 이론부터
파이썬, 사이킷런, 텐서플로를 활용한 실습까지
『선형대수와 통계학으로 배우는 머신러닝 with 파이썬』은 머신러닝의 기본적인 사용 방법뿐만 아니라 통계학, 선형대수, 최적화 이론 등 머신러닝에 필요한 배경 이론까지 다룬다. 머신러닝 알고리즘을 소개하는 것에 그치지 않고 이론적으로 이해가 필요한 부분은 수학 수식을 통해 자세히 설명함으로써, 해당 머신러닝 알고리즘의 작동 방식을 파악할 수 있다.
프로그래밍 실습은 머신러닝 파트에서는 사이킷런 라이브러리를, 딥러닝 파트에서는 텐서플로 라이브러리를 사용한다. 각 코드의 라인별 부가 설명을 통해 해당 코드의 역할을 이해할 수 있으며, 각 장 마지막의 전체 코드로 전체 흐름 또한 파악할 수 있다.
머신러닝의 배경 이론 이해를 바탕으로 실습하는 이 책을 통해, 머신러닝 기본기를 다지는 것을 넘어 자신의 분야에 응용할 수 있을 것이다.

이 책의 특징
- 머신러닝 수학 수식 전개 과정을 상세히 표현한다.
- 머신러닝 알고리즘 개념을 쉬운 그림으로 알기 쉽게 설명한다.
- 복잡한 수학 수식과 프로그래밍 코드를 자세하게 설명한다.

이 책이 필요한 독자
- 머신러닝 분야에 관심이 있고 머신러닝을 배우고 싶은 분
- 머신러닝을 공부한 경험이 있지만 실제 사용에 어려움을 느끼는 분
- 머신러닝 알고리즘의 원리를 이해하고 싶은 분
■ CHAPTER 1. 환경 설정
1.1 윈도우에서 환경 설정하기
1.2 맥북에서 환경 설정하기
1.3 리눅스에서 환경 설정하기

■ CHAPTER 2. 머신러닝 개요
2.1 머신러닝이란
2.2 지도 학습 vs 비지도 학습
2.3 머신러닝의 전반적인 과정

■ CHAPTER 3. 머신러닝을 위한 선형대수
3.1 선형대수와 머신러닝의 관계
3.2 행렬의 기초
___ 3.2.1 행렬이란
___ 3.2.2 대각 행렬
___ 3.2.3 전치 행렬
___ 3.2.4 행렬의 덧셈, 뺄셈
___ 3.2.5 행렬의 스칼라곱
___ 3.2.6 행렬곱
___ 3.2.7 행렬의 원소곱
___ 3.2.8 행렬식
___ 3.2.9 역행렬
3.3 내적
3.4 선형 변환
3.5 랭크, 차원
___ 3.5.1 벡터 공간, 기저
___ 3.5.2 랭크와 차원
___ 3.5.3 직교 행렬
3.6 고윳값, 고유 벡터
3.7 특이값 분해
___ 3.7.1 닮음
___ 3.7.2 직교 대각화
___ 3.7.3 고윳값 분해
___ 3.7.4 특이값 분해
3.8 이차식 표현
___ 3.8.1 이차식 개념
___ 3.8.2 양정치 행렬
3.9 벡터의 미분

■ CHAPTER 4. 머신러닝을 위한 통계학
4.1 통계학과 머신러닝의 관계
4.2 확률 변수와 확률 분포
___ 4.2.1 확률 변수
___ 4.2.2 확률 분포
4.3 모집단과 표본
4.4 평균과 분산
___ 4.4.1 평균
___ 4.4.2 분산
___ 4.4.3 평균과 분산의 성질
4.5 상관관계
___ 4.5.1 공분산
___ 4.5.2 상관 계수
4.6 균일 분포
4.7 정규 분포
4.8 이항 분포
___ 4.8.1 베르누이 분포
___ 4.8.2 이항 분포
___ 4.8.3 다항 분포
4.9 최대 가능도 추정
4.10 최대 사후 추정
___ 4.10.1 조건부 확률
___ 4.10.2 베이즈 추정
___ 4.10.3 최대 사후 추정

■ CHAPTER 5. 최적화
5.1 컨벡스 셋
___ 5.1.1 직선과 선분
___ 5.1.2 아핀 셋
___ 5.1.3 아핀 함수 vs 선형 함수
___ 5.1.4 컨벡스 셋
___ 5.1.5 초평면과 반공간
5.2 컨벡스 함수
___ 5.2.1 컨벡스 함수의 개념
___ 5.2.2 컨벡스 함수의 예
___ 5.2.3 1차, 2차 미분 조건
___ 5.2.4 얀센의 부등식
___ 5.2.5 컨벡스 성질 보존 조건
5.3 라그랑주 프리멀 함수
___ 5.3.1 일반적인 최적화 문제
___ 5.3.2 컨벡스 최적화 문제
___ 5.3.3 라그랑주 프리멀 함수
5.4 라그랑주 듀얼 함수
5.5 Karush-Kuhn-Tucker(KKT) 조건
5.6 머신러닝에서의 최적화 문제
___ 5.6.1 최소 제곱법
___ 5.6.2 제약식이 포함된 최소 제곱법
5.7 뉴턴-랩슨 메소드
5.8 그래디언트 디센트 옵티마이저
___ 5.8.1 그래디언트 디센트 소개
___ 5.8.2 확률적 그래디언트 디센트
___ 5.8.3 모멘텀
___ 5.8.4 네스테로프 가속 경사(Nesterov Accelerated Gradient)
___ 5.8.5 Adagrad
___ 5.8.6 Adadelta
___ 5.8.7 RMSprop
___ 5.8.8 Adam
___ 5.8.9 AdaMax
___ 5.8.10 Nadam

■ CHAPTER 6. 머신러닝 데이터 살펴보기
6.1 머신러닝에 사용할 데이터 소개
___ 6.1.1 집값 예측하기
___ 6.1.2 꽃 구분하기
___ 6.1.3 와인 구분하기
___ 6.1.4 당뇨병 예측하기
___ 6.1.5 유방암 예측하기
6.2 데이터 전처리
___ 6.2.1 결측치 처리
___ 6.2.2 클래스 라벨 설정
___ 6.2.3 원-핫 인코딩
___ 6.2.4 데이터 스케일링

■ CHAPTER 7. 모형 평가
7.1 오버피팅과 언더피팅
7.2 크로스-밸리데이션
7.3 파이프라인
7.4 그리드 서치
7.5 손실 함수와 비용 함수
___ 7.5.1 손실 함수와 비용 함수의 개념
___ 7.5.2 L1 손실 함수
___ 7.5.3 L2 손실 함수
___ 7.5.4 엔트로피
___ 7.5.5 Negative Log Likelihood(NLL)
7.6 모형 성능 평가
___ 7.6.1 모형 성능 평가에 필요한 개념
___ 7.6.2 분류 문제에서의 성능 평가
___ 7.6.3 회귀 문제에서의 성능 평가
___ 7.6.4 군집 문제에서의 성능 평가

■ CHAPTER 8. 지도 학습
8.1 지도 학습 개요
8.2 사이킷런 소개
8.3 k-최근접 이웃 알고리즘
___ 8.3.1 k-최근접 이웃 알고리즘의 개념
___ 8.3.2 k-최근접 이웃 실습
8.4 선형 회귀 분석
___ 8.4.1 선형 회귀 분석의 개념
___ 8.4.2 릿지 회귀 분석(L2 제약식)
___ 8.4.3 라쏘 회귀 분석(L1 제약식)
___ 8.4.4 엘라스틱 넷
___ 8.4.5 선형 회귀 분석 실습
8.5 로지스틱 회귀 분석
___ 8.5.1 로지스틱 회귀 분석의 개념
___ 8.5.2 로지스틱 회귀 분석 실습
8.6 나이브 베이즈
___ 8.6.1 나이브 베이즈의 개념
___ 8.6.2 나이브 베이즈 실습
8.7 의사 결정 나무
___ 8.7.1 의사 결정 나무의 개념
___ 8.7.2 엔트로피
___ 8.7.3 지니 계수
___ 8.7.4 회귀 나무
___ 8.7.5 의사 결정 나무 실습
8.8 서포트 벡터 머신
___ 8.8.1 서포트 벡터 머신의 개념
___ 8.8.2 소프트 마진
___ 8.8.3 커널 서포트 벡터 머신
___ 8.8.4 서포트 벡터 회귀
___ 8.8.5 서포트 벡터 머신 실습
8.9 크로스 밸리데이션 실습

■ CHAPTER 9. 앙상블 학습
9.1 앙상블 학습 개념
9.2 보팅
___ 9.2.1 보팅의 개념
__

머신러닝과 필연적 관계인 ‘수학’
수식이 어려운 당신에게 꼭 필요한 책!

머신러닝을 이해하기 위해서는 머신러닝을 근본적으로 떠받치고 있는 선형대수와 통계학, 최적화 개념에서부터 출발해야 한다. 『선형대수와 통계학으로 배우는 머신러닝 with 파이썬』은 이러한 개념을 다룰 때 수식 표현을 사용하고 코드보다 수학적인 지식을 먼저 서술함으로써, 머신러닝 알고리즘마다 원리를 이해하는 것을 목적으로 한다. 또한 ‘책에 쓰인 수학 기호’를 정리한 표를 통해 수식 이해에 어려움을 느끼는 독자의 진입 장벽을 낮추었다. 따라서 선형대수나 통계학에 대한 지식이 부족한 분들도 수학적 원리를 이해하며 기초를 탄탄히 쌓기에 큰 도움이 될 것이다.

소스 코드 다운로드
https://github.com/bjpublic/MachineLearning

베타리더의 한 마디
내가 공부할 때도 이런 책이 있었으면 그렇게 헤매지 않았을 텐데! 이 책을 통해 데이터 과학이라는 이름 아래에 모인 여러 학문에서 나온 지식의 연관성을 구체적으로 알 수 있습니다. _김민성 님

머신러닝을 공부하고 싶었지만, 수학적 기초 때문에 망설였던 분들이나 알고리즘에 사용되는 상세한 내용이 궁금한 분들에게 큰 도움이 될 것입니다. _류회성 님

책을 읽으면서 5년만 젊었으면 좋겠다는 생각이 들었습니다. 5년간의 박사과정에서 필요했던 지식이 모두 담겨 있습니다. 어색한 번역 투의 글이 아닌 한국어책이 나온 건 생명정보학 전공자로서 매우 기쁜 일입니다. _오세진 님

이 책을 읽으면서 인공지능의 기본이 되는 수학과 통계학에 무지한 상태로 학습을 이어 갔었다는 자기반성을 하게 되었습니다. 수학적인 원리 이해에 어려움을 겪고 있는 많은 분에게 필요한 책입니다. _이진 님

이 책은 자신의 전문 분야에 대한 연구 또는 업무 능력을 한 단계 높여 줄 것입니다. 머신러닝이 익숙하지 않은 분도 통계학을 통해 머신러닝을 더욱 잘 이해하는 계기가 될 것입니다. _이현훈 님

작가정보

저자(글) 장철원

공부한 내용을 기록하고 나누는 것을 좋아하는 프리랜서

충북대학교에서 통계학을 전공하고 고려대학교에서 통계학 석사를 졸업했다. 이후 플로리다 주립 대학교(Florida State University) 통계학 박사 과정 중 휴학 후 취업 전선에 뛰어들었다. 어렸을 때부터 게임을 좋아해 크래프톤(구 블루홀) 데이터 분석실에서 일했다. 주로 머신러닝을 이용한 이탈률 예측과 고객 분류 업무를 수행했다. 배틀그라운드 핵 관련 업무를 계기로 IT 보안에 흥미를 느껴, 이후 NHN IT보안실에서 일하며 머신러닝을 이용한 매크로 자동 탐지 시스템을 개발하고 특허를 출원했다. 현재는 머신러닝 관련 책을 쓰고 강의를 하는 프리랜서다. 공부한 내용을 공유하는 데 보람을 느껴 블로그와 카페를 운영하고 있다. 관심 분야는 인공지능, 머신러닝, 통계학, 선형대수, 커널, 임베디드, IT보안, 사물인터넷, 물리학, 철학이다.

ㆍ 프리랜서
ㆍ 한국정보통신기술협회 외부교수
ㆍ 패스트캠퍼스 강사
ㆍ 前) NHN IT 보안실
ㆍ 前) 크래프톤(구 블루홀) 데이터 분석실

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다.
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다.
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품/오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    선형대수와 통계학으로 배우는 머신러닝 with 파이썬 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    선형대수와 통계학으로 배우는 머신러닝 with 파이썬 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    선형대수와 통계학으로 배우는 머신러닝 with 파이썬
    최적화 개념부터 텐서플로를 활용한 딥러닝까지
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글북액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글북액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)