그로킹 심층 강화학습
2021년 10월 19일 출간
국내도서 : 2021년 10월 10일 출간
- eBook 상품 정보
- 파일 정보 PDF (14.81MB) | 501 쪽
- ISBN 9791162246498
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 25,200원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
심층 강화학습의 모든 것
사람은 시행착오를 통해 학습한다. 아픈 실패를 안겨준 상황을 피하고, 즐거웠던 성공의 경험을 되풀이하려 한다. 심층 강화학습도 마찬가지. 심층 강화학습은 딥러닝 기법을 활용해 환경의 반응을 기반으로 탐색하고 학습하는 머신러닝 시스템을 만드는 것을 목표로 한다. 저자는 심층 강화학습을 이해하는 밑바탕이 되어줄 강화학습에 관한 개념부터 알고리즘과 심층 강화학습의 기법, 최신 기술 동향까지 심층 강화학습에 대한 모든 걸 소개한다. 또한, 각 장마다 설명에 사용되는 예시와 삽화, 실습, 명확한 설명은 강력한 머신러닝 접근법에 대해 독자들이 쉽게 살펴볼 수 있도록 해준다. 이해하는 속도에 맞춘 친절한 해설이 여러분의 머릿속에 심층 강화학습의 기초와 원리, 복잡한 상황에 적용하는 방법까지 차근차근 넣어줄 것이다.
1.1 심층 강화학습이란 무엇인가?
1.2 심층 강화학습의 과거와 현재 그리고 미래
1.3 심층 강화학습의 적절성
1.4 두 가지의 명확한 기대치 설정
1.5 요약
CHAPTER 2 강화학습의 수학적 기초
2.1 강화학습의 구성 요소
2.2 MDP: 환경의 엔진
2.3 요약
CHAPTER 3 순간 목표와 장기 목표 간의 균형
3.1 의사결정을 내리는 에이전트의 목적
3.2 이상적인 행동들에 대한 계획
3.3 요약
CHAPTER 4 정보의 수집과 사용 간의 균형
4.1 평가가능한 피드백 해석의 어려움
4.2 전략적인 탐색
4.3 요약
CHAPTER 5 에이전트의 행동 평가
5.1 정책들의 가치를 추정하는 학습
5.2 여러 단계를 통해서 추정하는 학습
5.3 요약
CHAPTER 6 에이전트의 행동 개선
6.1 강화학습 에이전트의 구조
6.2 행동에 대한 정책을 개선하기 위한 학습
6.3 학습에서 행동을 분리하기
6.4 요약
CHAPTER 7 조금 더 효율적인 방법으로 목표에 도달하기
7.1 강건한 목표를 활용한 정책 개선 학습
7.2 상호작용, 학습 그리고 계획하는 에이전트
7.3 요약
CHAPTER 8 가치 기반 심층 강화학습 개요
8.1 심층 강화학습 에이전트가 사용하는 피드백의 유형
8.2 강화학습을 위한 함수 근사화
8.3 NFQ: 가치 기반 심층 강화학습을 위한 첫 번째 시도
8.4 요약
CHAPTER 9 조금 더 안정적인 가치 기반 학습 방법들
9.1 DQN: 강화학습을 지도학습처럼 만들기
9.2 이중 DQN: 행동-가치 함수에 대한 과도추정 극복
9.3 요약
CHAPTER 10 샘플 효율적인 가치 기반 학습 방법들
10.1 듀얼링 DDQN: 강화학습에 초점을 맞춘 신경망 구조
10.2 PER: 유의미한 경험 재현에 대한 우선순위 부여
10.3 요약
CHAPTER 11 정책-경사법과 액터-크리틱 학습법
11.1 REINFORCE: 결과기반 정책 학습
11.2 VPG: 가치함수 학습하기
11.3 A3C: 병렬적 정책 갱신
11.4 GAE: 강력한 이점 추정
11.5 A2C: 동기화된 정책 갱신
11.6 요약
CHAPTER 12 발전된 액터-크리틱 학습법
12.1 DDPG: 결정적 정책에 대한 근사화
12.2 TD3: DDPG를 넘어선 성능을 보이는 개선점들
12.3 SAC: 기대 반환값과 엔트로피를 최대화하기
12.4 PPO: 최적화 과정을 제한하기
12.5 요약
CHAPTER 13 범용 인공지능을 향한 길
13.1 다룬 내용과 다루지 못한 내용
13.2 범용 인공지능에 대한 조금 더 발전된 개념들
13.3 이후의 내용들
13.4 요약
부록 A 구글 콜랩에서의 실습 환경
수학 공식부터 코드 예제까지
모든 걸 갖춘 심층 강화학습 풀 코스
이 책은 강화학습과 심층 강화학습이 무엇인지 이해하고 실제로 적용해보고 싶은 사람들을 위해 기본 이론부터 실제 적용 방법까지 차례로 안내합니다. 자세한 예제와 적절한 비유가 섞인 개념 설명으로 시작해, 해당 개념을 수학적으로 확인할 수 있는 공식들과 이를 직접 만들어볼 수 있는 코드까지 제공하며 강화학습을 떠먹여줍니다. 눈과 손을 통해 들어오는 설명을 하나씩 차례대로 소화해나가다 보면 어렵게만 느껴졌던 심층 강화학습이 어느새 여러분의 것이 되어 있을 겁니다.
대상 독자
인공지능이란 연구 영역에 익숙하고 파이썬 코드를 볼 줄 알아야 합니다. 여기저기 있는 수학과 수많은 직관적인 설명을 이해하며 재미있고 자세한 예제를 바탕으로 학습하고자 하는 사람이라면 이 책을 재미있게 볼 수 있습니다. 인공지능에 대해 모르더라도, 파이썬 코드를 읽을 줄 알고 학습에 대한 흥미만 있다면 많은 내용을 얻어갈 수 있습니다. 기본적인 딥러닝 지식이 요구되긴 하지만, 이 책은 신경망과 역전파 방식 및 관련 기법을 간단하게 복습합니다. 결론적으로 이 책 한 권에서 원하는 지식을 모두 얻어갈 수 있으며 인공지능 에이전트를 가지고 놀고 싶은 사람이나 심층 강화학습을 깊게 이해하려는 사람에게 좋습니다.
주요 내용
● 심층 강화학습의 기본 원리
● 최신 심층 강화학습 기법
● 인간처럼 학습하는 심층 강화학습 에이전트 개발법
● 복잡한 상황에 적용할 수 있는 심층 강화학습 접근법
작가정보
저자 : 미겔 모랄레스
Miguel Morales
록히드 마틴의 미사일 화기 통제 및 자율 시스템 부서에서 강화학습을 활용하며 일하고 있다. 조지아 공과대학교에서 강화학습 및 의사 결정과 관련된 강의를 했으며, 유다시티에서 머신러닝 프로젝트 리뷰어 및 자율 주행 강의에서 멘토로 활동했으며, 심층 강화학습 강의를 개발했다. 조지아 공과대학교에서 컴퓨터과학 석사 과정을 수료했고, 유기적 지능에 대해 연구했다.
역자 : 강찬석
LG전자 인공지능연구소에서 생활가전에 인공지능 기술을 적용하는 업무를 하고 있다. 임베디드환경부터 인공지능까지 관심 영역이 넓으며, ‘생각많은 소심남의 자신에 대한 고찰’이라는 블로그(https://talkingaboutme.tistory.com/)를 통해, 본인이 알고 있는 지식을 다른 사람에게 쉽게 공유하는 방법을 항상 고민하는 편이다. 한빛미디어에서 『텐서플로를 활용한 머신러닝』 감수를 맡았다.
번역 강찬석
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)