그로킹 딥러닝
2020년 01월 03일 출간
국내도서 : 2019년 11월 21일 출간
- eBook 상품 정보
- 파일 정보 pdf (4.81MB)
- ISBN 9791162248218
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 18,720원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
지금이 바로 여러분이 이 책을 읽어야 하는 ‘때’입니다. 딥러닝을 이해하는 데 필요한 모든 사전 지식은 이 책 안에 있습니다. 이 책을 위해 여러분이 준비할 것은 아무것도 없습니다. 쉬운 비유와 그림으로 차근차근 책에서 안내하는 대로 앞 장에서 배운 내용을 복기하며 다음 장의 코드를 입력하다 보면 어느새 딥러닝의 기본을 튼튼히 갖추게 될 것입니다.
누구를 위한 책인가요?
. 수학은 자신 없지만, 딥러닝을 배우고 싶은 개발자
. 딥러닝을 연구에 활용하고 싶은 개발자가 아닌 연구자
. 라이브러리를 활용해 딥러닝을 구현했지만 동작원리가 궁금한 개발자
. 프로그래밍에 능숙하진 않지만, 딥러닝 또한 배워두고 싶은 학생
__옮긴이의 글
__독자들에게
__마음을 열고 이 책을 읽기 위한 사전 안내
__각 장의 내용 미리보기
__감사의 말
CHAPTER 1 딥러닝을 소개합니다 : 당신이 딥러닝을 공부해야 하는 이유
__딥러닝의 세계에 어서 오세요
__왜 딥러닝을 공부해야 할까요?
__딥러닝을 시작하기가 어렵진 않을까요?
__이 책으로 딥러닝을 공부해야 하는 이유
__시작에 앞서 필요한 지식과 실습 환경은?
__파이썬 지식이 조금 필요합니다
__요약
CHAPTER 2 딥러닝의 기초 개념 : 컴퓨터가 학습하는 원리
__딥러닝이란?
__머신러닝이란?
__지도 학습
__비지도 학습
__모수적 학습 vs 비모수적 학습
__모수적 지도 학습
__모수적 비지도 학습
__비모수적 학습
__요약
CHAPTER 3 신경망을 소개합니다 : 순전파
__신경망이 처음으로 할 일 : 예측
__예측을 수행하는 신경망
__신경망이 뭔가요?
__신경망이 하는 일이 궁금합니다
__복수 입력을 받아 예측하기
__신경망은 복수 입력을 어떻게 다루나요?
__복수 입력 코드 : 실행 가능한 완성 버전 코드
__복수 출력을 하는 예측하기
__복수 입력을 받아 복수 출력을 하는 예측
__복수 입력과 복수 출력 : 동작 원리
__예측에 관한 예측
__NumPy 빠르게 입문하기
__요약
CHAPTER 4 딥러닝을 소개합니다 : 경사하강법
__예측하고 비교하고 학습하라
__비교
__학습
__비교 : 여러분의 신경망은 예측을 잘하고 있습니까?
__오차를 측정하는 이유
__신경망 학습의 가장 간단한 형태는 어떤 걸까요?
__온냉 학습
__온냉 학습의 특징
__오차를 이용하여 이동 방향과 거리 계산하기
__경사하강법 1회 반복
__학습이란 오차를 줄이는 것
__학습의 여러 단계를 관찰해보세요
__왜 이게 작동하죠? weight_delta는 뭔가요?
__한 가지 개념에 집중하기
__툭 튀어나오는 막대기가 있는 상자
__미분계수 : 두 번째 이야기
__이건 몰라도 괜찮습니다
__미분계수를 학습에 이용하는 방법
__익숙한가요?
__경사하강법 망가뜨리기
__과잉 교정 시각화하기
__발산
__알파를 소개합니다
__코드 속의 알파
__외우기
CHAPTER 5 복수 가중치 동시에 학습하기 : 경사하강법 일반화 하기
__복수 입력을 받는 경사하강법
__복수 입력을 받는 경사하강법 이해하기
__학습의 각 단계를 관찰해보세요
__가중치 한 개 동결시키기
__복수 출력을 하는 경사하강법
__복수 입력을 받아 복수 출력을 하는 경사하강법
__가중치가 학습하는 것은 무엇일까요?
__가중치 시각화하기
__내적(가중합) 시각화하기
__요약
CHAPTER 6 첫 심층 신경망 만들기 : 역전파를 소개합니다
__신호등 문제
__데이터 준비하기
__행렬과 행렬 관계
__파이썬으로 행렬 만들기
__신경망 구축하기
__전체 데이터셋 학습하기
__전체, 배치, 확률적 경사하강법
__신경망은 상관관계를 학습합니다
__상향 압력과 하향 압력
__경계 조건 : 과적합
__경계 조건 : 서로 충돌하는 압력
__간접 상관관계 학습
__신경망 적층하기 : 복습
__역전파 : 장거리 오차 귀착법
__역전파는 왜 효과가 있는 걸까요?
__선형 vs 비선형
__아직 신경망이 동작하지 않는 이유
__간헐적 상관관계의 비밀
__짧은 휴식
__첫 심층 신경망 만들기
__코드로 만나는 역전파
__역전파의 한살이
__모두 합치기
__심층 신경망이 왜 중요한가요?
CHAPTER 7 신경망 사진 찍기 : 머릿속과 종이 위에
__이제 단순하게 만들어야 합니다
__상관관계 요약
__미리 너무 복잡해져 버린 시각화
__단순화한 시각화
__더 단순하게
__이 신경망이 예측하는 모습을 관찰해봅시다
__그림 대신 문자로 시각화하기
__변수 연결하기
__모두 나란히
__시각화 도구의 중요성
CHAPTER 8 신호 학습과 잡음 제거 : 정규화와 배치 소개
__3계층 신경망으로 MNIST 도전하기
__흠, 쉬운데요
__암기 vs 일반화
__신경망에서의 과적합
__오버피팅의 원인
__가장 단순한 정규화 : 조기 종료
__산업 표준 정규화 : 드롭아웃
__드롭아웃은 왜 효과가 있을까요 : 앙상블
__코드 속의 드롭아웃
__배치 경사하강법
__요약
CHAPTER 9 확률과 비선형성 모델링하기 : 활성화 함수
__활성화 함수란 무엇일까요?
__표준 은닉 계층 활성화 함수
__표준 출력 계층 활성화 함수
__핵심 사안 : 입력에 유사성이 있는 경우
__softmax 계산하기
__신경망 계층에 활성화 함수 추가하기
__delta에 기울기 곱하기
__출력을 기울기로 변환하기(미분계수)
__MNIST 신경망 업그레이드하기
CHAPTER 10 가장자리와 모서리를 학습하는 신경망 : CNN 소개
__여러 장소에서 가중치 재사용하기
__합성곱 계층
__NumPy로 간단
[도서 특징]
어려운 수식, 고수준 라이브러리, 복잡한 코드 없이도 단계별 학습으로 완성하는 딥러닝 코드
이 책은 신경망이 어떻게 인간을 모사하는지를 먼저 알려줍니다. 복잡한 수식 없이 서너 줄짜리 간단한 코드로 신경망을 구축한 다음, 이 작은 코드 조각을 다음 장에서 활용해 조금 더 그럴 듯한 프로그램으로 점차 발전시켜갑니다. 책 전체에 걸쳐 다음과 같이 물 흐르듯 학습할 수 있습니다.
인공지능/딥러닝 용어 설명 → 예측, 비교, 학습 패러다임 실습 → 기초 신경망 구축 → 딥러닝 관련 이론 설명 → 최신 기법 소개 → 딥러닝 프레임워크 구축
그리고 마지막 장은 이 책을 읽은 다음 무엇을 할지 10단계에 거쳐 딥러닝을 처음 접하는 입문자에게 방향을 제시합니다.
이 책에서 배우고 구현하는 내용
딥러닝에 필요한 것 / 머신러닝의 기본 개념 / 예측, 비교, 학습 패러다임 / 기초 신경망 구현 / 예측 평가와 에러 식별 / 학습 과정 / 심층 신경망 실습 / 오버피팅 / 드롭아웃 / 경사하강법 / 활성화 함수 / 확률 모델링 / 합성곱 신경망 / 자연어 처리 / 순환 신경망 / 언어 모델링 / 데이터 프라이버시
작가정보
저자(글) 앤드루 트라스크
구글 DeepMind 리서치 사이언티스트. 인간의 언어와 연관된 딥러닝을 주로 연구하고 있습니다. Digital Reasoning에서 연구원으로 있으며 세계 최대 인공 신경망을 구축했습니다.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)