파이썬을 이용한 딥러닝/강화학습 주식투자
2022년 07월 06일 출간
국내도서 : 2022년 03월 30일 출간
- eBook 상품 정보
- 파일 정보 pdf (12.58MB)
- ISBN 9791158393458
- 쪽수 352쪽
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 18,900원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
이 책을 통해 딥러닝과 강화학습을 이해하고 이를 바탕으로 주식투자를 비롯한 다양한 도메인에 활용할 수 있을 것입니다.
★ 이 책에서 다루는 내용 ★
◎ 딥러닝과 강화학습 이론
◎ 주식투자에 강화학습을 적용하는 법
◎ 강화학습 기반의 주식투자 시스템 개발
◎ 강화학습을 위한 실제 주식 데이터 획득 및 처리
◎ 강화학습으로 주식 데이터를 학습하는 법
◎ 학습한 강화학습 모델을 활용하는 법
◎ 강화학습 기반의 주식투자 시스템을 커스터마이징하는 법
- 홈페이지: https://wikibook.co.kr/dltradingrev2/
- 예제코드: https://github.com/quantylab/rltrader/tree/v3.0
1.1 금융 데이터란?
1.2 금융 데이터 분석의 필요성
1.3 금융 데이터 분석 방법
___1.3.1 기본적 분석
___1.3.2 기술적 분석
___1.3.3 정서 분석
___1.3.4 종합 분석
1.4 전통적인 퀀트 투자 방법
___1.4.1 퀀트 투자 역사
___1.4.2 저 PER+저 PBR+저 PCR 전략
___1.4.3 조셉 피오트로스키 F-Score
1.5 퀀트 투자 트렌드
1.6 포트폴리오 평가
1.7 이번 장의 요점
▣ 02장: 배경 이론 2 - 딥러닝이란?
2.1 딥러닝 개요
___2.1.1 딥러닝의 정의와 역사
___2.1.2 딥러닝이 최근에 주목받는 이유
___2.1.3 딥러닝으로 풀고자 하는 문제
2.2 딥러닝 발전 과정
___2.2.1 퍼셉트론
___2.2.2 인공 신경망
___2.2.3 다양한 활성화 함수 출현
___2.2.4 출력층에서 활성화 함수를 사용
___2.2.5 심층 신경망
2.3 딥러닝에 필요한 핵심 기술
___2.3.1 오차 역전파 기법
___2.3.2 최적해 탐색 기법
___2.3.3 과적합 해결 기법
2.4 고급 인공 신경망 구조
___2.4.1 순환 신경망
___2.4.2 LSTM 신경망
___2.4.3 합성곱 신경망
2.5 딥러닝 적용 사례
___2.5.1 기계 번역
___2.5.2 음성 인식
___2.5.3 이미지 인식
2.6 이번 장의 요점
▣ 03장: 배경 이론 3 - 강화학습이란?
3.1 강화학습의 기초가 된 마르코프 의사 결정 과정
___3.1.1 마르코프 가정
___3.1.2 마르코프 과정
___3.1.3 마르코프 의사 결정과정
3.2 상태 가치 함수와 상태-행동 가치 함수
___3.2.1 상태 가치 함수(state-value function)
___3.2.2 상태-행동 가치 함수(action-value function)
3.3 벨만 방정식
___3.3.1 벨만 기대 방정식(Bellman expectation equation)
___3.3.2 벨만 최적 방정식(Bellman optimality equation)
3.4 MDP를 위한 동적 프로그래밍
___3.4.1 정책 반복(policy iteration)
___3.4.2 가치 반복(value iteration)
___3.4.3 동적 프로그래밍의 한계와 강화학습이 필요한 이유
3.5 주요 강화학습 개념
___3.5.1 강화학습 표기법(notation)
___3.5.2 Model-based vs. Model-free
___3.5.3 예측(prediction)과 제어(control)
___3.5.4 부트스트랩(bootstrap)
___3.5.5 On-policy vs. Off-policy
___3.5.6 이용(exploitation)과 탐험(exploration)
3.6 주요 강화학습 기법
___3.6.1 몬테카를로 학습(Monte-Carlo learning, MC)
___3.6.2 시간차 학습(temporal-difference learning, TD)
___3.6.3 Q-러닝(Q-learning, QL)과 DQN(deep Q-network)
___3.6.4 정책 경사(policy gradient, PG)
___3.6.5 액터-크리틱
___3.6.6 A2C(advantage actor-critic)
___3.6.7 A3C(asynchronous advantage actor-critic)
___3.6.8 주요 강화학습 기법 정리
3.7 강화학습 적용 사례
___3.7.1 벽돌 깨기
___3.7.2 알파고(AlphaGo)
3.8 이번 장의 요점
▣ 04장: 배경 이론 4 - 강화학습을 이용한 주식투자란?
4.1 직관적으로 강화학습 전략 알아보기
___4.1.1 강화학습을 이용한 주식투자 구조
___4.1.2 차트 데이터 이해하기
___4.1.3 차트 데이터를 바탕으로 강화학습을 하는 방식
___4.1.4 거래 수수료와 거래세
___4.1.5 무작위 행동 결정(탐험)과 무작위 행동 결정 비율(엡실론)
4.2 강화학습 효과를 차별화하는 요인들
작가정보
저자 : 퀀티랩
퀀티랩(Quantylab)은 금융 데이터 분석 그룹입니다. 머신러닝, 딥러닝, 강화학습 등의 다양한 기술을 연구하고 금융 데이터를 분석하여 금융 투자에 도움이 될 의미 있는 정보를 만들어 내기 위해 노력하고 있습니다.
최근에는 이 책에서 다루는 ‘파이썬 기반의 강화학습 주식투자 프로젝트’와 더불어 ‘딥러닝 금융 포트폴리오 관리 프로젝트’, ‘자동 주식투자 시스템 개발 프로젝트’ 등을 진행하고 있습니다. 관련 프로젝트 일부를 퀀티랩 깃허브(Github)에서 공유하고 있습니다. 퀀티랩 서비스에서 종목랭킹, 종목분석 등의 매일 업데이트되는 금융 데이터 분석 결과를 확인할 수 있고, 기술적 내용 또한 퀀티랩 블로그에 공유하고 있습니다.
강화학습 주식투자를 포함하여 금융 데이터 수집 및 분석과 관련된 콘텐츠를 생산하고 있습니다. 퀀티랩 네이버 프리미엄 콘텐츠에 관련 글을 올리고 있으며, 퀀티랩 네이버 카페에서 강의 수강신청을 받고 있고, 퀀티랩 유튜브 채널에 무료 강의를 업로드하고 있습니다.
퀀티랩의 활동에 많은 관심 부탁드립니다.
- 서비스: http://quantylab.com/
- 블로그: http://blog.quantylab.com/
- 네이버 프리미엄 콘텐츠: https://contents.premium.naver.com/misoncorp/quantylab
- 네이버 카페: https://cafe.naver.com/quantylab
- 유튜브 채널: https://www.youtube.com/channel/UC5bVyL7gs85fPhxwCnbhcAw
- 깃허브: https://github.com/quantylab
- 인스타그램: https://www.instagram.com/quantylab/
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)