생활코딩 머신러닝 실습편 with 파이썬 텐서플로
2022년 05월 17일 출간
국내도서 : 2021년 12월 15일 출간
- eBook 상품 정보
- 파일 정보 PDF (20.30MB)
- ISBN 9791158393120
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
![](https://contents.kyobobook.co.kr/sih/fit-in/458x0/pdt/9791158392994.jpg)
쿠폰적용가 15,300원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
구글의 딥러닝 라이브러리인 텐서플로(TensorFlow)를 활용해 간단한 형태의 딥러닝 모델을 작성합니다. 실습은 무료로 사용할 수 있는 구글 코랩(Colaboratory)과 스프레드시트(Google Sheets)를 이용해 이뤄지므로 고성능 컴퓨터가 없어도 충분히 실습할 수 있습니다.
▣ 01장: 도입
01 오리엔테이션
__선수 지식
__머신러닝
__머신러닝 알고리즘
__딥러닝 라이브러리
__정리
02 목표와 전략
__딥러닝 입문 강의의 높은 벽
__새로운 배움 전략
03 지도학습의 빅 픽처
__#1 과거의 데이터를 준비합니다
__#2 모델의 구조를 만듭니다
__#3 데이터로 모델을 학습합니다
__#4 모델을 이용합니다
__정리
04 실습 환경: 구글 코랩
__구글 코랩 소개
__코랩 실습 환경 준비
__코랩 노트북 사용해보기
__소스 코드
▣ 02장: 표를 다루는 도구 ‘판다스’
01 판다스
__‘변수’의 의미
__판다스
__실습 데이터
02 판다스 실습
__실습 코드와 데이터
__판다스 라이브러리를 임포트
__파일로부터 데이터 읽어오기
__데이터 모양 확인하기
__데이터 칼럼 이름 확인
__독립변수와 종속변수 분리
__각각의 데이터 확인해보기
__전체 코드
▣ 03장: 첫 번째 딥러닝 - 레모네이드 판매 예측
01 머신러닝 모델을 만드는 과정
__머신러닝의 흐름
__머신러닝 코드 훑어보기
__머신러닝의 흐름과 코드를 함께 살펴보기
__정리
02 손실의 의미
__fit 함수의 실행 결과
__손실을 계산하는 원리
__학습을 반복하며 손실이 줄어듦을 확인
03 레모네이드 판매 예측 실습
__라이브러리 사용
__데이터를 준비
__모델 만들기
__학습
__모델을 이용하기
__전체 코드
▣ 04장: 두 번째 딥러닝 - 보스턴 집값 예측
01 보스턴 집값 예측
__보스턴 주택 가격
__중앙값
__각 열의 의미
02 수식과 퍼셉트론
__모델을 구성하는 코드
__퍼셉트론, 가중치, 편향의 의미
__데이터의 독립변수가 12개, 종속변수가 2개일 때의 모델
03 보스턴 집값 예측 실습
__라이브러리 사용
__과거의 데이터를 준비
__모델의 구조 만들기
__모델을 학습
__모델을 이용
__모델의 수식 확인
__전체 코드
▣ 05장: 학습의 실제
01 학습의 실제
__딥러닝 워크북
__실습 준비
__워크북 이용 방법
__초기화
__첫 번째 히스토리
__두 번째 히스토리
__세 번째 히스토리
__정리
▣ 06장: 세 번째 딥러닝 - 붓꽃 품종 분류
01 개요
__붓꽃의 품종
__붓꽃 데이터
__코드
02 원핫 인코딩
__원핫 인코딩의 원리
__데이터를 원핫 인코딩하는 코드
__모델을 만드는 코드
03 소프트맥스
__정답을 확률 표현으로 예측
__활성화 함수
__크로스엔트로피
__정확도
__정리
04 붓꽃 품종 분류 실습
__라이브러리 임포트
__과거의 데이터를 준비
__원핫 인코딩
__칼럼 이름 출력
__종속변수, 독립변수
__모델의 구조 만들기
__데이터로 모델을 학습
__모델을 이용
__학습한 가중치
__정리
__전체 코드
▣ 07장: 네 번째 딥러닝 - 멀티 레이어 인공 신경망
01 히든 레이어
__인풋 레이어, 아웃풋 레이어, 히든 레이어
__히든 레이어 추가하기
__히든 레이어를 3개 사용한 모델
02 히든 레이어 실습
__보스턴 집값 예측
__모델 구조 확인
__붓꽃 품종 분류
__전체 코드
▣ 08장: 데이터를 위한 팁
01 데이터를 위한 팁
__원핫 인코딩이 되지 않는 문제
__NA 값 체크
__전체 코드
▣ 09장: 모델을 위한 팁
01 모델을 위한 팁
__보스턴 집값 예측에 배치 노멀라이제이션을 적용
__분류 모델에 배치 노멀라이제이션을 적용
__전체 코드
▣ 10장: 1부 정리
[2부] 텐서플로 102
▣ 11장: 오리엔테이션
01 오리엔테이션
__이미지 분류 문제
▣ 12장: 데이터와 차원
01 데이터와 차원
__용어 지옥
__‘차원’이라는 말의 두 가지 의미
__표의 열 vs. 포함 관계
__정리
▣ 13장: 이미지 데이터 이해
01 이미지 데이터 구경하기
__MNIST 이미지
__CIFAR-10 이미지
__사진의 속성
__샘플 이미지
02 이미지 데이터 실습
__라이브러리 사용
__샘플 이미지셋 불러오기
_
★ 이 책에서 배우는 내용 ★
◎ 지도학습(supervised learning)이 이루어지는 과정
◎ 구글 코랩에서 파이썬으로 딥러닝 코드를 작성하는 방법
◎ 판다스(Pandas)를 활용해 표 형태의 데이터를 다루는 법
◎ 텐서플로(TensorFlow)를 활용한 레모네이드 판매 예측, 보스턴 집값 예측, 붓꽃(iris) 품종 분류 실습
◎ CNN의 원리와 사용법
◎ 딥러닝을 활용한 손글씨 이미지(MNIST)와 사물의 이미지(CIFAR-10) 분류
〈관련자료〉
[동영상 강좌]
■ Tensorflow 101 수업: https://opentutorials.org/module/4966
■ Tensorflow 102 수업: https://opentutorials.org/module/5268
작가정보
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (5,000원 이상 상품으로 변경 예정, 2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (5,000원 이상 eBook으로 변경 예정, 2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
![교보e캐시 1,000원](https://contents.kyobobook.co.kr/resources/dig-fo/dig/images/ink/etc/img_eCash@2x.png)
- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.
![교보e캐시 1,000원](https://contents.kyobobook.co.kr/digital/kyobobook/mbr/mmbrbnft/ecash/ecash_1000.png)
- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)