본문 바로가기

추천 검색어

실시간 인기 검색어

딥러닝을 위한 수학

인공지능의 핵심 원리를 이해하고 파이썬으로 구현해 보는
위키북스

2022년 02월 18일 출간

종이책 : 2020년 03월 27일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 pdf (20.48MB)
ISBN 9791158393182
쪽수 318쪽
듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 전자책 화면에 표기된 주석 등을 모두 읽어 줍니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
  • '교보 ebook' 앱을 최신 버전으로 설치해야 이용 가능합니다. (Android v3.0.26, iOS v3.0.09,PC v1.2 버전 이상)
소득공제
소장
정가 : 17,500원

쿠폰적용가 15,750

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 300원

작품소개

이 상품이 속한 분야

AI의 블랙박스를 열어 보자!

딥러닝의 본질을 이해하는 데 필요한 ‘수학'을 ‘최단 코스'로 배울 수 있습니다! 이 책은 미분과 벡터, 행렬과 확률과 같은 딥러닝에 필요한 수학을 고등학교 1학년 수준부터 복습해 나가면서 설명하고 있습니다. 최단 코스로 익힐 수 있도록 꼭 필요한 수학 개념만 간추려서 설명하고 그것들의 관계를 그림으로 표현했습니다. 이론으로 배운 수학적 개념은 주피터 노트북에서 실행할 수 있도록 소스코드도 함께 제공합니다. 이 책을 통해 ‘딥러닝'의 동작 원리를 직접 체험해보기 바랍니다.
[1부] 준비편

실습 환경 구성
__소스코드 다운로드
__개인 PC에서 주피터 노트북 사용하기
__아나콘다를 사용하는 경우(윈도우)
__아나콘다를 사용하는 경우(macOS)
__비주얼 스튜디오 코드를 사용하는 경우
__클라우드에서 주피터 노트북 사용하기
미리 알아두면 좋을 지식
__인공지능 관련 용어의 관계도
__인공지능의 포함 관계
__머신러닝의 포함 관계
이 책에서 사용하는 수학 기호와 그리스 문자

[2부] 도입편

▣ 01장: 머신러닝 입문
1.1 인공지능과 머신러닝
1.2 머신러닝이란?
__1.2.1 머신러닝 모델이란?
__1.2.2 학습 방법
__1.2.3 지도학습에서의 회귀와 분류
__1.2.4 학습 단계와 예측 단계
__1.2.5 손실함수와 경사하강법
1.3 처음으로 만나는 머신러닝 모델
1.4 이 책에서 다루는 머신러닝 모델
1.5 머신러닝과 딥러닝에서 수학이 필요한 이유
1.6 이 책의 구성

[3부] 이론편

▣ 02장: 미분과 적분
2.1 함수
__2.1.1 함수란?
__2.1.2 함수의 그래프
2.2 합성함수와 역함수
__2.2.1 합성함수
__2.2.2 역함수
2.3 극한과 미분
__2.3.1 미분의 정의
__2.3.2 미분과 함숫값의 근사 표현
__2.3.3 접선의 방정식
2.4 극대와 극소
2.5 다항식의 미분
__2.5.1 xn의 미분
__2.5.2 미분의 선형성과 다항식의 미분
__2.5.3 xr의 미분
2.6 곱의 미분
2.7 합성함수와 역함수의 미분
__2.7.1 합성함수의 미분
__2.7.2 역함수의 미분
2.8 몫의 미분
2.9 적분

▣ 03장: 벡터와 행렬
3.1 벡터
3.1.1 벡터란?
__3.1.2 벡터의 표기 방법
__3.1.3 벡터의 성분 표시
__3.1.4 다차원으로 확장
__3.1.5 벡터 성분의 표기 방법
3.2 덧셈, 뺄셈, 스칼라배
__3.2.1 벡터의 덧셈
__3.2.2 벡터의 뺄셈
__3.2.3 벡터의 스칼라배
3.3 길이와 거리
__3.3.1 벡터의 길이
__3.3.2 Σ 기호의 의미
__3.3.3 벡터 간의 거리
3.4 삼각함수
__3.4.1 삼각비
__3.4.2 삼각함수
__3.4.3 삼각함수의 그래프
__3.4.4 직각삼각형의 변을 삼각함수로 표현하기
3.5 내적
__3.5.1 절댓값과 내적의 정의
__3.5.2 벡터 성분과 내적의 공식
3.6 코사인 유사도
__3.6.1 코사인 유사도
3.7 행렬과 행렬 연산
__3.7.1 1 출력 노드의 내적 표현
__3.7.1 3 출력 노드의 행렬곱 표현

▣ 04장: 다변수함수의 미분
4.1 다변수함수
4.2 편미분
4.3 전미분
4.4 전미분과 합성함수
4.5 경사하강법

▣ 05장: 지수함수와 로그함수
5.1 지수함수
__5.1.1 거듭제곱의 정의와 법칙
__5.1.2 거듭제곱의 확장
__5.1.3 함수로의 확장
5.2 로그함수
5.3 로그함수의 미분
5.4 지수함수의 미분
5.5 시그모이드 함수
5.6 소프트맥스 함수

▣ 06장: 확률과 통계
6.1 확률변수와 확률분포
6.2 확률밀도함수와 확률분포함수
6.3 가능도함수와 최대가능도 추정

[4부] 실습편

▣ 07장: 선형회귀 모델
7.1 손실함수의 편미분과 경사하강법
7.2 예제 개요
7.3 학습 데이터의 표기 방법
7.4 경사하강법의 접근법
7.5 예측 모델
7.6 손실함수
7.7 손실함수의 미분 계산
7.8 경사하강법의 적용
7.9 프로그램 구현
7.10 다중회귀 모델로의 확장

▣ 08장: 로지스틱 회귀 모델 (이진 분류)
8.1 예제 개요
8.2 회귀 모델과 분류 모델의 차이
8.3 예측 모델
8.4 손실함수(교차 엔트로피 함수)
8.5 손실함수의 미분 계산
8.6 경사하강법의 적용
8.7 프로그램 구현

▣ 09장: 로지스틱 회귀 모델 (다중 클래스 분류)
9.1 예제 개요
9.2 모델의 기본 개념
9.3 가중치 행렬
9.4 소프트맥스 함수
9.

작가정보

저자 : 아카이시 마사노리
1985년에 도쿄대학공학부 계수공학과를 졸업하고 1987년 도쿄대학공학계 연구과 계수공학 석사 과정을 수료한 후 일본 IBM에 입사했다. 도쿄 기초 연구소에서 수식 처리 시스템을 연구, 개발하다 1993년 시스템 엔지니어 부문으로 옮겨 오픈 시스템의 인프라 설계 및 구축, 애플리케이션 설계 등의 업무를 수행했다. 2013년에는 스마트 시티 사업에 참여하고 2016년에는 왓슨(Watson) 사업부로 옮겨 현재까지 이르고 있다.
저서로는 《왓슨 스튜디오로 시작하는 머신러닝, 심층학습》 《실무 현장에서 사용할 수 있다! Python 자연어 처리 입문》이 있다. 교토정보대학원대학에서 ‘인공지능을 위한 수학’을 강의하고 있다. 그 밖에 기술 관련 사이트(Qiita)에 다수의 글을 기고하였다.

역자 : 신상재
2001년에 부산대학교 컴퓨터공학과를 졸업하고 삼성 SDS에 입사했다. 별다른 재주 없이 20년을 버틴 끝에 자칭 ‘고인 물의 전당’에 스스로 들어가 살아있는 레거시가 됐다. 일찍이 수포자였으나 초등학교 아들이 수학 문제집을 푸는 것을 보고 언젠가는 미적분을 물어볼지 모른다는 두려움에 인공지능을 핑계 삼아 수학 공부를 다시 하고 있다. 유튜브 채널 ‘번역하는 개발자’에서 자신이 번역한 책을 소개하고 번역하며 겪었던 에피소드를 공유하고 있다.
주요 번역서로는 《비즈니스 프레임워크》(로드북, 2020) 《스프링 철저 입문》(위키북스, 2018) 《인공지능을 위한 수학》(프리렉, 2018) 등이 있다.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다.
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다.
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품/오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    딥러닝을 위한 수학 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    딥러닝을 위한 수학 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    딥러닝을 위한 수학
    인공지능의 핵심 원리를 이해하고 파이썬으로 구현해 보는
    저자 모두보기
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글북액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글북액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)