- 영문명
- Analysis of Post-Editing Strategies for Translating Game Headlines
- 발행기관
- 융합영어영문학회
- 저자명
- 김정연(Jung-yon Kim) 김동미(Dong-mie Kim) 곽은주(Eun-joo Kwak)
- 간행물 정보
- 『융합영어영문학(구.English Reading and Teaching)』제9권 2호, 203~223쪽, 전체 21쪽
- 주제분류
- 인문학 > 언어학
- 파일형태
- 발행일자
- 2024.08.31

국문 초록
This study aims to examine the translation strategies for effectively translating headlines when post-editing results from machine translation engines and generative AI focusing on the unique characteristics of game texts based on interactivity. For this study, translations of game content from Need for Speed: Unbound and Real Racing 3 were compared across Human Translation (HT), DeepL, Google Translate, Papago, and ChatGPT. The results revealed that human translators employed literal translation, transliteration, and context-based translation, while machine translations predominantly used literal and transliteration methods. Among the platforms, Google Translate used literal translation the most, followed by Papago and DeepL. Conversely, transliteration was most frequently used by DeepL, with Google Translate using it the least. Consequently, while human translation accounted for approximately 25%, the absence of such contextual consideration in machine translations suggests that they fail to capture the contextual nuances of game texts.
영문 초록
목차
Ⅰ. 서론
Ⅱ. 선행연구
Ⅲ. 게임 헤드라인 번역 분석 및 포스트 에디팅 전략
Ⅳ. 결론
인용문헌
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
