본문 바로가기

추천 검색어

실시간 인기 검색어

학술논문

Symmetrically Weighted Net Confidence for Generation of Meaningful Association Rules

이용수 2

영문명
발행기관
한국자료분석학회
저자명
Hee Chang Park
간행물 정보
『Journal of The Korean Data Analysis Society (JKDAS)』Vol.16 No.3, 1141~1149쪽, 전체 9쪽
주제분류
자연과학 > 통계학
파일형태
PDF
발행일자
2014.06.30
이용가능 이용불가
  • sam무제한 이용권 으로 학술논문 이용이 가능합니다.
  • 이 학술논문 정보는 (주)교보문고와 각 발행기관 사이에 저작물 이용 계약이 체결된 것으로, 교보문고를 통해 제공되고 있습니다. 1:1 문의
논문 표지

국문 초록

영문 초록

Today, government, public institutions and companies began to use data mining techniques to discover valuable information and knowledge from big database. Data mining is the process of analyzing data from different perspectives, and summarizing it into useful information through a huge volume database. Association rule, one of the well-studied methods in data mining, finds the relationship among itemsets in a massive database. In finding meaningful association rules, several objective interestingness measures are used, which are support, confidence, net confidence measure, and symmetrically pure confidence. But these measures are not sufficient to generate only interesting information, and have some drawbacks that they can not determine the direction of the association, and are difficult to interpret operationally. In this paper, we proposed a symmetrically weighted net confidence as an association threshold, and investigate the conditions of association criteria. Also, we compared this measure with some association thresholds through a few experiments. The results showed that the symmetrically weighted net confidence monotonically increased as co-occurrence frequency increased, had positive or negative values, and is symmetric.

목차

1. Introduction
2. Symmetrically weighted net confidence
3. Simulation data analysis
4. Conclusion
References

키워드

해당간행물 수록 논문

참고문헌

최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!

신규가입 혜택 지급이 완료 되었습니다.

바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

교보e캐시 1,000원
TOP
인용하기
APA

Hee Chang Park. (2014).Symmetrically Weighted Net Confidence for Generation of Meaningful Association Rules. Journal of The Korean Data Analysis Society (JKDAS), 16 (3), 1141-1149

MLA

Hee Chang Park. "Symmetrically Weighted Net Confidence for Generation of Meaningful Association Rules." Journal of The Korean Data Analysis Society (JKDAS), 16.3(2014): 1141-1149

sam 이용권 선택
님이 보유하신 이용권입니다.
차감하실 sam이용권을 선택하세요.