- 영문명
- A Study of Cancer-related Gene Exploration using PCA Logistic Regression
- 발행기관
- 한국자료분석학회
- 저자명
- 강길모(Gil Mo Kang) 김규곤(Kyu Kon Kim) 강창완(Changwan Kang)
- 간행물 정보
- 『Journal of The Korean Data Analysis Society (JKDAS)』Vol.16 No.3, 1241~1248쪽, 전체 8쪽
- 주제분류
- 자연과학 > 통계학
- 파일형태
- 발행일자
- 2014.06.30

국문 초록
후생유전학(epigenetics)에서 DNA 메틸화 측정은 암 발생 연구에 매우 중요한 역할을 하고 있으며 여기서 얻어지는 메틸레이션 비율데이터는 암 발생 관련 유전자 탐색의 핵심데이터이다. 왜냐하면 암환자 유전자의 메틸레이션 비율은 정상인과 다르게 나타나며 메틸화 이상이 암의 주요 발생 원인으로 밝혀졌기 때문이다. 본 연구의 목적은 이러한 암 관련 유전자 탐색 방법의 또 다른 접근 방법을 제시하는데 있다. 본 연구에서 사용한 메틸레이션 데이터는 약 92,609개의 유전자에 대한 데이터로서 다음과 같은 분석 절차를 제시하였다. 분석 1단계로 먼저 K-means 군집분석을 실행하여 정상인과 암환자를 구분 짓는 유전자 1390개를 걸러내었다. 그리고 나서 탐색적 분석을 보완하기 위해 다시 통계적 유의성을 지닌 유전자를 Mann-Whitney 검정을 이용하여 최종 암 발생 영향 유전자로 132개를 선택하였다. 마지막 단계로 주성분 로지스틱 회귀분석을 실시하여 영향 크기별 유전자를 발견 할 수 있었다.
영문 초록
In the area of epigenetics, DNA methylation analysis plays an important role for detecting cancer genes. The methylation ratio data is used for exploring the cancer genes because the methylation value of cancer patients is different from the values of normal persons. In this study, we used the methylation data of 92,609 genes and performed the K-means clustering. We found the 1390 genes which differentiate the cancer patients from the normal persons. But this results have no statistical significances. Then we reperformed the Mann-Whitney tests. As a result, we finally found the 132 genes for affecting the cancer. Moreover we could find the important index of genes through the principal component logistic regression.
목차
1. 서론
2. 데이터 및 연구방법
3. 분석결과
4. 결론
References
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!
