- 영문명
- A review of penalized likelihood method for spatial data analysis
- 발행기관
- 건국대학교 경제경영연구소
- 저자명
- 이윤동(Yoon Dong Lee)
- 간행물 정보
- 『상경연구』제30권 제1호, 103~113쪽, 전체 11쪽
- 주제분류
- 경제경영 > 경제학
- 파일형태
- 발행일자
- 2005.11.30
국문 초록
영문 초록
In this research, we review the penalized likelihood method, in the view of applying the method to spatial data analysis. We considered a few groups of specific topics.
One is the topics of determining the weighting factor of penalty term. Determining the weighting factor is equivalent to determining the degree of freedom of the selected statistical model. In spatial statistics, infill asymptotic setting is a more reasonable framework than increasing domain asymptotic setting, but not a few research have considered the infill asymptotic setting of the weighting factor. We review the meaning of the topic.
The other topic is to review the effects of method using data-adjusted bases. Differently with Kriging in spatial statistics and well known methods in time series models using data-adjusted bases for prediction, reproducing kernel Hilbert space method and fast Fourier transform method adopt the bases obtained independently from data. We considered the necessity of the comparative researches between the methods using data-adjusted bases and simple mathematical bases.
목차
I. 서론
II. 본론
III. 결론
참고문헌
Abstract
키워드
해당간행물 수록 논문
참고문헌
최근 이용한 논문
교보eBook 첫 방문을 환영 합니다!
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!