Data Engineering with Scala and Spark
2024년 01월 31일 출간
- eBook 상품 정보
- 파일 정보 PDF (8.16MB)
- ISBN 9781804612583
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 29,700원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
▶Book Description
Most data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount.
This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You’ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You’ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users.
By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.
▶ What You Will Learn
⦁ Set up your development environment to build pipelines in Scala
⦁ Get to grips with polymorphic functions, type parameterization, and Scala implicits
⦁ Use Spark DataFrames, Datasets, and Spark SQL with Scala
⦁ Read and write data to object stores
⦁ Profile and clean your data using Deequ
⦁ Performance tune your data pipelines using Scala
1. Scala Essentials for Data Engineers
2. Environment Setup
3. An Introduction to Apache Spark and Its APIs – DataFrame, Dataset, and Spark SQL
4. Working with Databases
5. Object Stores and Data Lakes
6. Understanding Data Transformation
7. Data Profiling and Data Quality
8. Test-Driven Development, Code Health, and Maintainability
9. CI/CD with GitHub
10. Data Pipeline Orchestration
11. Performance Tuning
12. Building Batch Pipelines Using Spark and Scala
13. Building Streaming Pipelines Using Spark and Scala
▶ What this book covers
⦁ Chapter 1, Scala Essentials for Data Engineers, introduces Scala in data engineering, recognizing its importance due to type safety, adoption by major companies such as Netflix and Airbnb, native integration with Spark, fostering a software engineering mindset, and its versatility in both objectoriented and functional programming. The chapter covers concepts such as functional programming, objects, classes, higher-order functions, polymorphism, variance, option types, collections, pattern matching, and implicits in Scala.
⦁ Chapter 2, Environment Setup, presents two data engineering pipeline development environments. The first, a cloud-based setup, offers portability and easy access but incurs costs for system maintenance. The second involves local machine utilization, requiring a setup but avoiding cloud expenses.
⦁ Chapter 3, An Introduction to Apache Spark and Its APIs – DataFrame, Dataset, and Spark SQL, focuses on Apache Spark as a leading distributed data processing framework. It emphasizes handling large data volumes across machine clusters. Topics include working with Spark, building Spark applications with Scala, and comprehending Spark’s Dataset and DataFrame APIs for effective data processing.
⦁ Chapter 4, Working with Databases, dives into relational databases’ utilization within data pipelines, emphasizing efficiency in reading from and writing to databases. It covers the Spark API and building a straightforward database library, exploring Spark’s JDBC API, loading configurations, creating an interface, and executing multiple database operations.
⦁ Chapter 5, Object Stores and Data Lakes, discusses the evolution from traditional databases to the era of data lakes and lakehouses, due to surges in data volumes. The focus will be on object stores, which are fundamental for both data lakes and lake houses.
⦁ Chapter 6, Understanding Data Transformation, goes deeper into essential Spark skills for data engineers aiming to transform data for downstream use cases. It covers advanced Spark topics such as the distinctions between transformations and actions, aggregation, grouping, joining data, utilizing window functions, and handling complex dataset types.
⦁ Chapter 7, Data Profiling and Data Quality, stresses the importance of data quality checks in preventing issues downstream. It introduces the Deequ library, an open source tool by Amazon, for defining checks, performing analysis, suggesting constraints, and storing metrics.
⦁ Chapter 8, Test-Driven Development, Code Health, and Maintainability discusses software development best practices applied to data engineering, defect identification, code consistency, and security. It introduces Test-Driven Development (TDD), unit tests, integration tests, code coverage checks, static code analysis, and the importance of linting and code style for development practices.
⦁ Chapter 9, CI/CD with GitHub, introduces Continuous Integration/Continuous Delivery (CI/CD) concepts in Scala data engineering projects using GitHub. It explains CI/CD as automated testing and deployment, aiming for rapid iteration, error reduction, and consistent quality. Chapter 10, Data Pipeline Orchestration, focuses on data pipeline orchestration, emphasizing the need for seamless task coordination and failure notification. It introduces tools such as Apache Airflow, Argo, Databricks Workflows, and Azure Data Factory.
⦁ Chapter 11, Performance Tuning, emphasizes the critical role of the Spark UI in optimizing performance. It covers topics such as the Spark UI basics, performance tuning, computing resource optimization, understanding data skewing, indexing, and partitioning.
⦁ Chapter 12, Building Batch Pipelines Using Spark and Scala, combines all of your previously learned skills to construct a batch pipeline. It stresses the significance of batch processing, leveraging Apache Spark’s distributed processing and Scala’s versatility. The topics cover a typical business use case, medallion architecture, batch data ingestion, transformation, quality checks, loading into a serving layer, and pipeline orchestration.
⦁ Chapter 13, Building Streaming Pipelines Using Spark and Scala, focuses on constructing a streaming pipeline, emphasizing real-time data ingestion using Azure Event Hubs, configured as Apache Kafka for Spark integration. It employs Spark’s Structured Streaming and Scala for efficient data handling. Topics include use case understanding, streaming data ingestion, transformation, serving layer loading, and orchestration, aiming to equip you with the skills to develop and implement similar pipelines in your organizations.
▶ Preface
Every company today is a data company regardless of the industry. Innovative companies use data to analyze the past, predict what will happen, and react to what is happening now. Data engineers are some of the most critical employees at companies today. They are essential for collecting, cleaning, and maintaining trusted datasets that analysts, data scientists, and reporting tools use to provide insights.
This book will teach you to leverage the Scala programming language on the Spark framework and the latest cloud technologies to build continuous and triggered data pipelines. You will do this by setting up a data engineering environment for local development and scalable distributed cloud deployments, using data engineering best practices, test-driven development, and Continuous Integration/Continuous Delivery (CI/CD). You will also orchestrate and performance-tune your end-to-end pipelines to deliver data to your end users.
작가정보
저자(글) Eric Tome
Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.
저자(글) Rupam Bhattacharjee
Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.
저자(글) David Radford
David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master’s degree in computer science and works as a senior solutions architect at Databricks.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)