본문 바로가기

추천 검색어

실시간 인기 검색어

Principles of Data Science-3rd

A beginner's guide to essential math and coding skills for data fluency and machine learning
Sinan Ozdemir 지음
Packt(GCO Science)

2024년 01월 31일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 PDF (10.99MB)
ISBN 9781837636303
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장
정가 : 40,000원

쿠폰적용가 36,000

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

Transform your data into insights with must-know techniques and mathematical concepts to unravel the secrets hidden within your data

▶Book Description
Principles of Data Science bridges mathematics, programming, and business analysis, empowering you to confidently pose and address complex data questions and construct effective machine learning pipelines. This book will equip you with the tools to transform abstract concepts and raw statistics into actionable insights.
Starting with cleaning and preparation, you’ll explore effective data mining strategies and techniques before moving on to building a holistic picture of how every piece of the data science puzzle fits together. Throughout the book, you’ll discover statistical models with which you can control and navigate even the densest or the sparsest of datasets and learn how to create powerful visualizations that communicate the stories hidden in your data.
With a focus on application, this edition covers advanced transfer learning and pre-trained models for NLP and vision tasks. You’ll get to grips with advanced techniques for mitigating algorithmic bias in data as well as models and addressing model and data drift. Finally, you’ll explore medium-level data governance, including data provenance, privacy, and deletion request handling.
By the end of this data science book, you'll have learned the fundamentals of computational mathematics and statistics, all while navigating the intricacies of modern ML and large pre-trained models like GPT and BERT.

▶ What You Will Learn
⦁ Master the fundamentals steps of data science through practical examples
⦁ Bridge the gap between math and programming using advanced statistics and ML
⦁ Harness probability, calculus, and models for effective data control
⦁ Explore transformative modern ML with large language models
⦁ Evaluate ML success with impactful metrics and MLOps
⦁ Create compelling visuals that convey actionable insights
⦁ Quantify and mitigate biases in data and ML models
▶ TABLE of CONTENTS
1. Data Science Terminology
2. Types of Data
3. The Five Steps of Data Science
4. Basic Mathematics
5. Impossible or Improbable – A Gentle Introduction to Probability
6. Advanced Probability
7. What are the Chances? An Introduction to Statistics
8. Advanced Statistics
9. Communicating Data
10. How to Tell if Your Toaster is Learning – Machine Learning Essentials
11. Predictions Don't Grow on Trees, or Do They?
12. Introduction to Transfer Learning and Pre-trained Models
13. Mitigating Algorithmic Bias and Tackling Model and Data Drift
14. AI Governance
15. Navigating Real-World Data Science Case Studies in Action

▶ What this book covers
⦁ Chapter 1, Data Science Terminology, describes the basic terminology used by data scientists. We will cover the differences between often-confused terms as well as looking at examples of each term used in order to truly understand how to communicate in the language of data science. We will begin by looking at the broad term data science and then, little by little, get more specific until we arrive at the individual subdomains of data science, such as machine learning and statistical inference. This chapter will also look at the three main areas of data science, which are math, programming, and domain expertise. We will look at each one individually and understand the uses of each. We will also look at the basic Python packages and the syntax that will be used throughout the book.
⦁ Chapter 2, Types of Data, deals with data types and the way data is observed. We will explore the different levels of data as well as the different forms of data. Specifically, we will understand the differences between structured/unstructured data, quantitative/qualitative data, and more.
⦁ Chapter 3, The Five Steps of Data Science, deals with the data science process as well as data wrangling and preparation. We will go into the five steps of data science and give examples of the process at every step of the way. After we cover the five steps of data science, we will turn to data wrangling, which is the data exploration/preparation stage of the process. In order to best understand these principles, we will use extensive examples to explain each step. I will also provide tips to look for when exploring data, including looking for data on different scales, categorical variables, and missing data. We will use pandas to check for and fix all of these things.
⦁ Chapter 4, Basic Mathematics, goes over the elementary mathematical skills needed by any data scientist. We will dive into functional analysis and use matric algebra as well as calculus to show and prove various outcomes based on real-world data problems.
⦁ Chapter 5, Impossible or Improbable – A Gentle Introduction to Probability, focuses heavily on the basic probability that is required for data science. We will derive results from data using probability rules and begin to see how we view real-world problems using probability. This chapter will be highly practical and Python will be used to code the examples.
⦁ Chapter 6, Advanced Probability, is where we explore how to use Python to solve more complex probability problems and also look at a new type of probability called Bayesian inference. We will use these theorems to solve real-world data scenarios such as weather predictions.
⦁ Chapter 7, What Are the Chances? An Introduction to Statistics, is on basic statistics, which is required for data science. We will also explore the types of statistical errors, including type I and type II errors, using examples. These errors are as essential to our analysis as the actual results. Errors and their different types allow us to dig deeper into our conclusions and avoid potentially disastrous results. Python will be used to code up statistical problems and results.
⦁ Chapter 8, Advanced Statistics, is where normalization is key. Understanding why and how we normalize data will be crucial. We will cover basic plotting, such as scatter plots, bar plots, and histograms. This chapter will also get into statistical modeling using data. We will not only define the concept as using math to model a real-world situation, but we will also use real data in order to extrapolate our own statistical models. We will also discuss overfitting. Python will be used to code up statistical problems and results.
⦁ Chapter 9, Communicating Data, deals with the different ways of communicating results from our analysis. We will look at different presentation styles as well as different visualization techniques. The point of this chapter is to take our results and be able to explain them in a coherent, intelligible way so that anyone, whether they are data-savvy or not, may understand and use our results. Much of what we will discuss will be how to create effective graphs through labels, keys, colors, and more. We will also look at more advanced visualization techniques such as parallel coordinates plots.
⦁ Chapter 10, How to Tell if Your Toaster is Learning – Machine Learning Essentials, focuses on machine learning as a part of data science. We will define the different types of machine learning and see examples of each kind. We will specifically cover areas in regression, classification, and unsupervised learning. This chapter will cover what machine learning is and how it is used in data science. We will revisit the differences between machine learning and statistical modeling and how machine learning is a broader category of the latter. Our aim will be to utilize statistics and probability in order to understand and apply essential machine learning skills to practical industries such as marketing. Examples will include predicting star ratings of restaurant reviews, predicting the presence of disease, spam email detection, and much more. This chapter focuses more on statistical and probabilistic models. The next chapter will deal with models that do not fall into this category. We will also focus on metrics that tell us how accurate our models are. We will use metrics in order to conclude results and make predictions using machine learning.
⦁ Chapter 11, Predictions Don’t Grow on Trees, or Do They?, focuses heavily on machine learning that is not considered a statistical or probabilistic model. These constitute models that cannot be contained in a single equation, such as linear regression or naive Bayes. The models in this chapter are, while still based on mathematical principles, more complex than a single equation. The models include KNN, decision trees, and an introduction to unsupervised clustering. Metrics will become very important here as they will form the basis for measuring our understanding and our models. We will also peer into some of the ethics of data science in this chapter. We will see where machine learning can perhaps boundaries in areas such as privacy and advertising and try to draw a conclusion about the ethics of predictions.

Principles of Data Science bridges mathematics, programming, and business analysis, empowering you to confidently pose and address complex data questions and construct effective machine learning pipelines. This book will equip you with the tools you need to transform abstract concepts and raw statistics into actionable insights.
Starting with cleaning and preparation, you’ll explore effective data mining strategies and techniques before moving on to building a holistic picture of how every piece of the data science puzzle fits together. Throughout the book, you’ll discover statistical models with which you can control and navigate even the densest or sparsest of datasets and learn how to create powerful visualizations that communicate the stories hidden in your data.
With a focus on application, this edition covers advanced transfer learning and pre-trained models for NLP and vision tasks. You’ll get to grips with advanced techniques for mitigating algorithmic bias in data as well as models and addressing model and data drift. Finally, you’ll explore medium-level data governance, including data provenance, privacy, and deletion request handling.
By the end of this data science book, you’ll have learned the fundamentals of computational mathematics and statistics, all while navigating the intricacies of modern machine learning and large pre-trained models such as GPT and BERT.

작가정보

저자(글) Sinan Ozdemir

Sinan Ozdemir is an active lecturer on large language models and a former lecturer of data science at
Johns Hopkins University. He is the author of multiple textbooks on data science and machine learning,
including Quick Start Guide to LLMs. Sinan is currently the founder of LoopGenius, which uses AI to
help people and businesses boost their sales, and was previously the founder of the acquired Kylie.ai, an
enterprise-grade conversational AI platform with RPA capabilities. He holds a master’s degree in pure
mathematics from Johns Hopkins University and is based in San Francisco.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    Principles of Data Science-3rd 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    Principles of Data Science-3rd 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    Principles of Data Science-3rd
    A beginner's guide to essential math and coding skills for data fluency and machine learning
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)