Hands-On Genetic Algorithms with Python
2020년 01월 31일 출간
- eBook 상품 정보
- 파일 정보 PDF (8.99MB)
- ISBN 9781838559182
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 불가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 20,700원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
▶Book Description
Genetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence.
After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications.
By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.
▶What You Will Learn
?Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications
?Use genetic algorithms to optimize functions and solve planning and scheduling problems
?Enhance the performance of machine learning models and optimize deep learning network architecture
?Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym
?Explore how images can be reconstructed using a set of semi-transparent shapes
?Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization
▶Key Features
?Explore the ins and outs of genetic algorithms with this fast-paced guide
?Implement tasks such as feature selection, search optimization, and cluster analysis using Python
?Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications
▶Who This Book Is For
This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
▷ Section 1: The Basics of Genetic Algorithms
?Chapter 1: An Introduction to Genetic Algorithms
?Chapter 2: Understanding the Key Components of Genetic Algorithms
▷ Section 2: Solving Problems with Genetic Algorithms
?Chapter 3: Using the DEAP Framework
?Chapter 4: Combinatorial Optimization
?Chapter 5: Constraint Satisfaction
?Chapter 6: Optimizing Continuous Functions
▷ Section 3: Artificial Intelligence Applications of Genetic Algorithms
?Chapter 7: Enhancing Machine Learning Models Using Feature Selection
?Chapter 8: Hyperparameter Tuning of Machine Learning Models
?Chapter 9: Architecture Optimization of Deep Learning Networks
?Chapter 10: Reinforcement Learning with Genetic Algorithms
▷ Section 4: Related Technologies
?Chapter 11: Genetic Image Reconstruction
?Chapter 12: Other Evolutionary and Bio-Inspired Computation
▶What this book covers
? Chapter 1, An Introduction to Genetic Algorithms, introduces genetic algorithms, their underlying theory, and their basic principles of operation. You will then explore the differences between genetic algorithms and traditional methods, and learn about the best use cases for genetic algorithms.
? Chapter 2, Understanding the Key Components of Genetic Algorithms, dives deeper into the key components and the implementation details of genetic algorithms. After outlining the basic genetic flow, you will learn about their different components and the various implementations for each component.
? Chapter 3, Using the DEAP Framework, introduces DEAP―a powerful and flexible evolutionary computation framework capable of solving real-life problems using genetic algorithms. You will discover how to use this framework by writing a Python program that solves the OneMax problem―the 'Hello World' of genetic algorithms.
? Chapter 4, Combinatorial Optimization, covers combinatorial optimization problems, such as the knapsack problem, the traveling salesman problem, and the vehicle routing problem, and how to write Python programs that solve them using genetic algorithms and the DEAP framework.
? Chapter 5, Constraint Satisfaction, introduces constraint satisfaction problems, such as the N-Queen problem, the nurse scheduling problem, and the graph coloring problem, and explains how to write Python programs that solve them using genetic algorithms and the DEAP framework.
? Chapter 6, Optimizing Continuous Functions, covers continuous optimization problems, and how they can be solved by means of genetic algorithms. The examples you will use include the optimization of the Eggholder function, Himmelblau's function, and Simionescu's function. Along the way, you will explore the concepts of niching, sharing, and constraint handling.
? Chapter 7, Enhancing Machine Learning Models Using Feature Selection, talks about supervised machine learning models, and explains how genetic algorithms can be used to improve the performance of these models by selecting the best subset of features from the input data provided.
? Chapter 8, Hyperparameter Tuning of Machine Learning Models, explains how genetic algorithms can be used to improve the performance of supervised machine learning models by tuning the hyperparameters of the models, either by applying a genetic algorithmdriven grid search, or by using a direct genetic search.
? Chapter 9, Architecture Optimization of Deep Learning Networks, focuses on artificial neural networks, and discovers how genetic algorithms can be used to improve the performance of neural-based models by optimizing their network architecture. You will then learn how to combine network architecture optimization with hyperparameter tuning.
? Chapter 10, Reinforcement Learning with Genetic Algorithms, covers reinforcement learning, and explains how genetic algorithms can be applied to reinforcement learning tasks while solving two benchmark environments―MountainCar and CartPole― from the OpenAI Gym toolkit.
? Chapter 11, Genetic Image Reconstruction, experiments with the reconstruction of a wellknown image using a set of semi-transparent polygons, orchestrated by genetic algorithms. Along the way, you will gain useful experience in image processing and the relevant Python libraries.
? Chapter 12, Other Evolutionary and Bio-Inspired Computation Techniques, broadens your horizons and gets you acquainted with several other biologically inspired problem-solving techniques. Two of these methods―genetic programming and particle swarm optimization―will be demonstrated using DEAP-based Python programs.
▶ Preface
Drawing inspiration from Charles Darwin's theory of natural evolution, genetic algorithms are among the most fascinating techniques for solving search, optimization, and learning problems. They can often prove successful where traditional algorithms fail to provide adequate results within a reasonable timeframe.
This book will take you on a journey to mastering this extremely powerful, yet simple, approach, and applying it to a wide variety of tasks, culminating in AI applications.
Using this book, you will gain an understanding of genetic algorithms, how they work, and when to use them. In addition, the book will provide you with hands-on experience of applying genetic algorithms to various domains using the popular Python programming language.
작가정보
저자(글) Eyal Wirsansky
Eyal Wirsansky is a senior software engineer, a technology community leader, and an artificial intelligence enthusiast and researcher. Eyal started his software engineering career as a pioneer in the field of voice over IP, and he now has over 20 years' experience of creating a variety of high-performing enterprise solutions. While in graduate school, he focused his research on genetic algorithms and neural networks. One outcome of his research is a novel supervised machine learning algorithm that combines the two.Eyal leads the Jacksonville (FL) Java user group, hosts the Artificial Intelligence for Enterprise virtual user group, and writes the developer-oriented artificial intelligence blog, ai4java.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)