본문 바로가기

추천 검색어

실시간 인기 검색어

Learn TensorFlow Enterprise

Build, manage, and scale machine learning workloads seamlessly using Google's TensorFlow Enterprise
KC Tung 지음
Packt(GCO Science)

2020년 11월 20일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 PDF (7.44MB)
ISBN 9781800204874
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.

PDF 필기가능 (Android, iOS)
소득공제
소장
정가 : 30,000원

쿠폰적용가 27,000

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 200원

작품소개

이 상품이 속한 분야

Use TensorFlow Enterprise with other GCP services to improve the speed and efficiency of machine learning pipelines for reliable and stable enterprise-level deployment

▶What You Will Learn
?Discover how to set up a GCP TensorFlow Enterprise cloud instance and environment
?Handle and format raw data that can be consumed by the TensorFlow model training process
?Develop ML models and leverage prebuilt models using the TensorFlow Enterprise API
?Use distributed training strategies and implement hyperparameter tuning to scale and improve your model training experiments
?Scale the training process by using GPU and TPU clusters
?Adopt the latest model optimization techniques and deployment methodologies to improve model efficiency

▶Key Features
?Build scalable, seamless, and enterprise-ready cloud-based machine learning applications using TensorFlow Enterprise
?Discover how to accelerate the machine learning development life cycle using enterprise-grade services
?Manage Google's cloud services to scale and optimize AI models in production

▶Who This Book Is For
This book is for data scientists, machine learning developers or engineers, and cloud practitioners who want to learn and implement various services and features offered by TensorFlow Enterprise from scratch. Basic knowledge of the machine learning development process will be useful.
▶TABLE of CONTENTS
▷ Section 1 ? TensorFlow Enterprise Services and Features
?Chapter 1: Overview of TensorFlow Enterprise
?Chapter 2: Running TensorFlow Enterprise in Google AI Platform

▷ Section 2 ? Data Preprocessing and Modeling
?Chapter 3: Data Preparation and Manipulation Techniques
?Chapter 4: Reusable Models and Scalable Data Pipelines

▷ Section 3 ? Scaling and Tuning ML Works
?Chapter 5: Training at Scale
?Chapter 6: Hyperparameter Tuning

▷ Section 4 ? Model Optimization and Deployment
?Chapter 7: Model Optimization
?Chapter 8: Best Practices for Model Training and Performance
?Chapter 9: Serving a TensorFlow Model

▶What this book covers
? Chapter 1, Overview of TensorFlow Enterprise, illustrates how to set up and run TensorFlow Enterprise in a Google Cloud Platform (GCP) environment. This will give you initial hands-on experience in seeing how TensorFlow Enterprise integrates with other data services in GCP.

? Chapter 2, Running TensorFlow Enterprise in Google AI Platform, describes how to use GCP to set up and run TensorFlow Enterprise. As a differentiated TensorFlow distribution, TensorFlow Enterprise can be found on several (but not all) GCP platforms. It is important to use these platforms in order to ensure that the correct distribution is provisioned.

? Chapter 3, Data Preparation and Manipulation Techniques, illustrates how to deal with raw data and format it to uniquely suit consumption by a TensorFlow model training process. We will look at a number of essential TensorFlow Enterprise APIs that convert raw data into Protobuf format for efficient streaming, which is a recommended workflow for feeding data into a training process.

? Chapter 4, Reusable Models and Scalable Data Pipelines, describes the different ways in which a TensorFlow Enterprise model may be built or reused. These options provide the flexibility to suit different situational requirements for building, training, and deploying TensorFlow models. Equipped with this knowledge, you will be able to make informed choices and understand the trade-offs among different model development strategies.

? Chapter 5, Training at Scale, illustrates the use of TensorFlow Enterprise distributed training strategies to scale your model training to a cluster (either GPU or TPU). This will enable you to build a model development and training process that is robust and take advantage of all the hardware at your disposal.

? Chapter 6, Hyperparameter Tuning, focuses on hyperparameter tuning as this is a necessary part of model training, especially when building your own model. TensorFlow Enterprise now provides high-level APIs for advanced hyperparameter space search algorithms. Through this chapter, you will learn how to leverage the distributed computing power at your disposal to reduce the training time required for hyperparameter tuning.

? Chapter 7, Model Optimization, explores the concept of how lean and mean your model is. Does your model run as efficiently as possible? If your use case requires the model to run with limited resources (memory, model size, or data type), such as in the case of edge or mobile devices, then it's time to consider model runtime optimization. This chapter discusses the latest means of model optimization through the TensorFlow Lite framework. After this chapter, you will be able to optimize a trained TensorFlow Enterprise model to be as lightweight as possible for inferencing.

? Chapter 8, Best Practices for Model Training and Performance, focuses on two aspects of model training that are universal: data ingestion and overfitting. First, it is necessary to build a data ingestion pipeline that works regardless of the size and complexity of the training data. In this chapter, best practices and recommendations for using TensorFlow Enterprise data preprocessing pipelines are explained and demonstrated. Second, in dealing with overfitting, standard practices of regularization as well as some recently released regularizations by the TensorFlow team are discussed.

? Chapter 9, Serving a TensorFlow Model, describes the fundamentals of model inferencing as a web service. You will learn how to serve a TensorFlow model using TensorFlow Serving by building a Docker image of the model. In this chapter, you will begin by learning how to make use of saved models in your local environment first. Then you will build a Docker image of the model using TensorFlow Serving as the base image. Finally, you will serve this model as a web service through the RESTful API exposed by your Docker container.

▶ Preface
TensorFlow as a machine learning (ML) library has matured into a production-ready ecosystem. This beginner's book uses practical examples to enable you to build and deploy TensorFlow models using optimal settings that ensure long-term support without having to worry about library deprecation or being left behind when it comes to bug fixes or workarounds.

The book begins by showing you how to refine your TensorFlow project and set it up for enterprise-level deployment. You'll then learn how to choose a future-proof version of TensorFlow. As you advance, you'll find out how to build and deploy models in a robust and stable environment by following recommended practices made available in TensorFlow Enterprise. This book also teaches you how to manage your services better and enhance the performance and reliability of your artificial intelligence (AI) applications. You'll discover how to use various enterprise-ready services to accelerate your ML and AI workflows on Google Cloud Platform (GCP). Finally, you'll scale your ML models and handle heavy workloads across CPUs, GPUs, and Cloud TPUs.

By the end of this TensorFlow book, you'll have learned the patterns needed for TensorFlow Enterprise model development, data pipelines, training, and deployment.

작가정보

저자(글) KC Tung

KC Tung is a Cloud Solution Architect at Microsoft and he specializes in Machine learning, AI models development, and deployment. He has a Ph.D. in Biophysics from The University of Texas Southwestern Medical Center in Dallas and has spoken at the 2018 O'Reilly AI Conference in San Francisco and the 2019 O'Reilly Tensorflow World Conference in San Jose. He has worked on building data ingestion and feature engineering pipeline for a custom dataset in a cloud environment. He has also delivered ML models for scalable deployment.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    Learn TensorFlow Enterprise 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    Learn TensorFlow Enterprise 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    Learn TensorFlow Enterprise
    Build, manage, and scale machine learning workloads seamlessly using Google's TensorFlow Enterprise
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글바이액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)