Hands-On Explainable AI (XAI) with Python
2020년 07월 31일 출간
- eBook 상품 정보
- 파일 정보 PDF (8.62MB)
- ISBN 9781800202764
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)

쿠폰적용가 27,000원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
▶Book Description
Effectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex.
Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications.
You will build XAI solutions in Python, TensorFlow 2, Google Cloud's XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle.
You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces.
By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI.
▶What You Will Learn
?Plan for XAI through the different stages of the machine learning life cycle
?Estimate the strengths and weaknesses of popular open-source XAI applications
?Examine how to detect and handle bias issues in machine learning data
?Review ethics considerations and tools to address common problems in machine learning data
?Share XAI design and visualization best practices
?Integrate explainable AI results using Python models
?Use XAI toolkits for Python in machine learning life cycles to solve business problems
▶Key Features
?Learn explainable AI tools and techniques to process trustworthy AI results
?Understand how to detect, handle, and avoid common issues with AI ethics and bias
?Integrate fair AI into popular apps and reporting tools to deliver business value using Python and associated tools
▶Who This Book Is For
This book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book.
Some of the potential readers of this book include:
?Professionals who already use Python for as data science, machine learning, research, and analysis
?Data analysts and data scientists who want an introduction into explainable AI tools and techniques
?AI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications
? Chapter 1: Explaining Artificial Intelligence with Python
? Chapter 2: White Box XAI for AI Bias and Ethics
? Chapter 3: Explaining Machine Learning with Facets
? Chapter 4: Microsoft Azure Machine Learning Model Interpretability with SHAP
? Chapter 5: Building an Explainable AI Solution from Scratch
? Chapter 6: AI Fairness with Google's What-If Tool (WIT)
? Chapter 7: A Python Client for Explainable AI Chatbots
? Chapter 8: Local Interpretable Model-Agnostic Explanations (LIME)
? Chapter 9: The Counterfactual Explanations Method
? Chapter 10: Contrastive XAI
? Chapter 11: Anchors XAI
? Chapter 12: Cognitive XAI
? Answers to the Questions
▶What this book covers
? Chapter 1, Explaining Artificial Intelligence with Python
Explainable AI (XAI) cannot be summed up in a single method for all participants in a project. When a patient shows signs of COVID-19, West Nile Virus, or any other virus, how can a general practitioner and AI form a cobot to determine the origin of the disease? The chapter describes a case study and an AI solution built from scratch, to trace the origins of a patient's infection with a Python solution that uses k-nearest neighbors and Google Location History.
? Chapter 2, White Box XAI for AI Bias and Ethics
Artificial intelligence might sometimes have to make life or death decisions. When the autopilot of an autonomous vehicle detects pedestrians suddenly crossing a road, what decision should be made when there is no time to stop?
Can the vehicle change lanes without hitting other pedestrians or vehicles? The chapter describes the MIT moral machine experiment and builds a Python program using decision trees to make real-life decisions.
? Chapter 3, Explaining Machine Learning with Facets
Machine learning is a data-driven training process. Yet, companies rarely provide clean data or even all of the data required to start a project. Furthermore, the data often comes from different sources and formats. Machine learning models involve complex mathematics, even when the data seems acceptable. A project can rapidly become a nightmare from the start.
This chapter implements Facets in Python in a Jupyter Notebook on Google Colaboratory. Facets provides multiple views and tools to track the variables that distort the ML model's results. Finding counterfactual data points, and identifying the causes, can save hours of otherwise tedious classical analysis.
? Chapter 4, Microsoft Azure Machine Learning Model Interpretability with SHAP
Artificial intelligence designers and developers spend days searching for the right ML model that fits the specifications of a project. Explainable AI provides valuable time-saving information. However, nobody has the time to develop an explainable AI solution for every single ML model on the market!
This chapter introduces model-agnostic explainable AI through a Python program that implements Shapley values with SHAP based on Microsoft Azure's research. This game theory approach provides explanations no matter which ML model it faces. The Python program provides explainable AI graphs showing which variables influence the outcome of a specific result.
? Chapter 5, Building an Explainable AI Solution from Scratch
Artificial intelligence has progressed so fast in the past few years that moral obligations have sometimes been overlooked. Eradicating bias has become critical to the survival of AI. Machine learning decisions based on racial or ethnic criteria were once accepted in the United States; however, it has now become an obligation to track bias and eliminate those features in datasets that could be using discrimination as information.
This chapter shows how to eradicate bias and build an ethical ML system in Python with Google's What-If Tool and Facets. The program will take moral, legal, and ethical parameters into account from the very beginning.
? Chapter 6, AI Fairness with Google's What-If Tool (WIT)
Google's PAIR (People + AI Research ? https://research.google/teams/brain/pair/) designed What-If Tool (WIT) to investigate the fairness of an AI model. This chapter takes us deeper into Explainable AI, introducing a Python program that creates a deep neural network (DNN) with TensorFlow, uses a SHAP explainer and creates a WIT instance.
The WIT will provide ground truth, cost ration fairness, and PR curve visualizations. The Python program shows how ROC curves, AUC, slicing, and PR curves can pinpoint the variables that produced a result, using AI fairness and ethical tools to make predictions.
...
▶ Preface
In today's era of AI, accurately interpreting and communicating trustworthy AI findings is becoming a crucial skill to master. Artificial intelligence often surpasses human understanding. As such, the results of machine learning models can often prove difficult and sometimes impossible to explain. Both users and developers face challenges when asked to explain how and why an AI decision was made.
The AI designer cannot possibly design a single explainable AI solution for the hundreds of machine learning and deep learning models. Effectively translating AI insights to business stakeholders requires individual planning, design, and visualization choices. European and US law has opened the door to litigation when results cannot be explained, but developers face overwhelming amounts of data and results in real-life implementations, making it nearly impossible to find explanations without the proper tools.
In this book, you will learn about tools and techniques using Python to visualize, explain, and integrate trustworthy AI results to deliver business value, while avoiding common issues with AI bias and ethics.
Throughout the book, you will work with hands-on Python machine learning projects in Python and TensorFlow 2.x. You will learn how to use WIT, SHAP, LIME, CEM, and other key explainable AI tools. You will explore tools designed by IBM, Google, Microsoft, and other advanced AI research labs.
You will be introduced to several open source explainable AI tools for Python that can be used throughout the machine learning project lifecycle. You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting machine learning model visualizations in user explainable interfaces.
We will build XAI solutions in Python and TensorFlow 2.x, and use Google Cloud's XAI platform and Google Colaboratory.
작가정보
저자(글) Denis Rothman
Denis Rothman graduated from Sorbonne University and Paris-Diderot University, writing one of the very first word2vector embedding solutions. He began his career authoring one of the first AI cognitive natural language processing (NLP) chatbots applied as a language teacher for Moet et Chandon and other companies. He has also authored an AI resource optimizer for IBM and apparel producers. He then authored an advanced planning and scheduling (APS) solution that is used worldwide. Denis is an expert in explainable AI (XAI), having added interpretable mandatory, acceptance-based explanation data and explanation interfaces to the solutions implemented for major corporate aerospace, apparel, and supply chain projects.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

- 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
- 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
- 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
가장 와 닿는 하나의 키워드를 선택해주세요.
총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.
신고 사유를 선택해주세요.
신고 내용은 이용약관 및 정책에 의해 처리됩니다.
허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
있으니 유의하시어 신중하게 신고해주세요.
이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.
구매 후 90일 이내 작성 시, e교환권 100원 적립
eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.
차감하실 sam이용권을 선택하세요.
차감하실 sam이용권을 선택하세요.
선물하실 sam이용권을 선택하세요.
-
보유 권수 / 선물할 권수0권 / 1권
-
받는사람 이름받는사람 휴대전화
- 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
- 열람권은 1인당 1권씩 선물 가능합니다.
- 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
- 선물한 열람권의 등록유효기간은 14일 입니다.
(상대방이 기한내에 등록하지 않을 경우 소멸됩니다.) - 무제한 이용권일 경우 열람권 선물이 불가합니다.
첫 구매 시 교보e캐시 지급해 드립니다.

- 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
- 한 ID당 최초 1회 지급 / sam 이용권 제외
- 구글바이액션을 통해 교보eBook 구매 이력이 없는 회원 대상
- 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)