본문 바로가기

추천 검색어

실시간 인기 검색어

Dancing with Qubits

How quantum computing works and how it can change the world
Packt(GCO Science)

2019년 11월 28일 출간

(개의 리뷰)
( 0% 의 구매자)
eBook 상품 정보
파일 정보 pdf (12.07MB)
ISBN 9781838825256
쪽수 515쪽
지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
교보eBook App 듣기(TTS) 불가능
TTS 란?
텍스트를 음성으로 읽어주는 기술입니다.
  • 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를​ 읽을 수 있습니다.
  • 전자책 화면에 표기된 주석 등을 모두 읽어 줍니다.
  • 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
  • '교보 ebook' 앱을 최신 버전으로 설치해야 이용 가능합니다. (Android v3. 0.26, iOS v3.0.09,PC v1.2 버전 이상)

PDF 필기 Android 가능 (iOS예정)
소득공제
소장
정가 : 27,000원

쿠폰적용가 24,300

10% 할인 | 5%P 적립

이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.

카드&결제 혜택

  • 5만원 이상 구매 시 추가 2,000P
  • 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
  • 리뷰 작성 시, e교환권 추가 최대 300원

작품소개

이 상품이 속한 분야

▶Book Description
Quantum computing is making us change the way we think about computers. Quantum bits, a.k.a. qubits, can make it possible to solve problems that would otherwise be intractable with current computing technology.

Dancing with Qubits is a quantum computing textbook that starts with an overview of why quantum computing is so different from classical computing and describes several industry use cases where it can have a major impact. From there it moves on to a fuller description of classical computing and the mathematical underpinnings necessary to understand such concepts as superposition, entanglement, and interference. Next up is circuits and algorithms, both basic and more sophisticated. It then nicely moves on to provide a survey of the physics and engineering ideas behind how quantum computing hardware is built. Finally, the book looks to the future and gives you guidance on understanding how further developments will affect you.

Really understanding quantum computing requires a lot of math, and this book doesn't shy away from the necessary math concepts you'll need. Each topic is introduced and explained thoroughly, in clear English with helpful examples.

▶What You Will Learn
- See how quantum computing works, delve into the math behind it, what makes it different, and - - why it is so powerful with this quantum computing textbook
- Discover the complex, mind-bending mechanics that underpin quantum systems
- Understand the necessary concepts behind classical and quantum computing
- Refresh and extend your grasp of essential mathematics, computing, and quantum theory
- Explore the main applications of quantum computing to the fields of scientific computing, AI, and elsewhere
- Examine a detailed overview of qubits, quantum circuits, and quantum algorithm

▶Key Features
- Discover how quantum computing works and delve into the math behind it with this quantum computing textbook
- Learn how it may become the most important new computer technology of the century
- Explore the inner workings of quantum computing technology to quickly process complex cloud data and solve problems

▶Who This Book Is For
Dancing with Qubits is a quantum computing textbook for those who want to deeply explore the inner workings of quantum computing. This entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.
▶TABLE of CONTENTS
1. Why Quantum Computing?
? PART I ? Foundations
2. They're Not Old, They're Classics
3. More Numbers than You Can Imagine
4. Planes and Circles and Spheres, Oh My
5. Dimensions
6. What Do You Mean "Probably"?
? PART II ? Quantum Computing
7. One Qubit
8. Two Cubits, Three
9. Wiring Up the Circuits
10. From Circuits to Algorithms
11. Getting Physical
12. Questions about the Future

▶What does this book cover?
Before we jump into understanding how quantum computing works from the ground up, we need to take a little time to see how things are done classically. In fact, this is not only for the sake of comparison. The future, I believe, will be a hybrid of classical and quantum computers. The best way to learn about something is start with basic principles and then work your way up. That way you know how to reason about it and don’t rely on rote memorization or faulty analogies.

- Chapter 1 ? Why Quantum Computing?
In the first chapter we ask the most basic question that applies to this book: why quantum computing? Why do we care? In what ways will our lives change? What are the use cases to which we hope to apply quantum computing and see a significant improvement? What do we even mean by “significant improvement”?

? PART I ? Foundations
The first full part covers the mathematics you need to understand the concepts of quantum computing. While we will ultimately be operating in very large dimensions and using complex numbers, there’s a lot of insight you can gain from what happens in traditional 2D and 3D.

- Chapter 2 ? They’re Not Old, They’re Classics
Classical computers are pervasive but relatively few people know what’s inside them and how they work. To contrast them later with quantum computers, we look at the basics along with the reasons why they have problems doing some kinds of calculations. I introduce the simple notion of a bit, a single 0 or 1, but show that working with many bits can eventually give you all the software you use today.

- Chapter 3 ? More Numbers than You Can Imagine
The numbers people use every day are called real numbers. Included in these are integers, rational numbers, and irrational numbers. There are other kinds of numbers, though, and structures that have many of the same algebraic properties. We look at these to lay the groundwork to understand the “compute” part of what a quantum computer does.

- Chapter 4 ? Planes and Circles and Spheres, Oh My
From algebra we move to geometry and relate the two. What is a circle, really, and what does it have in common with a sphere when we move from two to three dimensions? Trigonometry becomes more obvious, though that is not a legally binding statement. What you thought of as a plane becomes the basis for understanding complex numbers, which are key to the definition of quantum bits, usually known as qubits.

- Chapter 5 ? Dimensions
After laying the algebraic and geometric groundwork, we move beyond the familiar twoand three-dimensional world. Vector spaces generalize to many dimensions and are essential for understanding the exponential power that quantum computers can harness. What can you do when you are working in many dimensions and how should you think about such operations? This extra elbow room comes into play when we consider how quantum computing might augment AI.

- Chapter 6 ? What Do You Mean “Probably”?
“God does not play dice with the universe,” said Albert Einstein. This was not a religious statement but rather an expression of his lack of comfort with the idea that randomness and probability play a role in how nature operates. Well, he didn’t get that quite right. Quantum mechanics, the deep and often mysterious part of physics on which quantum computing is based, very much has probability at its core. Therefore, we cover the fundamentals of probability to aid your understanding of quantum processes and behavior.

? PART II ? Quantum Computing
The next part is the core of how quantum computing really works. We look at quantum bits―qubits―singly and together, and then create circuits that implement algorithms. Much of this is the ideal case when we have perfect fault-tolerant qubits. When we really create quantum computers, we must deal with the physical realities of noise and the need to reduce errors.

- Chapter 7 ? One Qubit...

▶ Preface
When most people think about computers, they think about laptops or maybe even the bigger machines like the servers that power the web, the Internet, and the cloud. If you look around, though, you may start seeing computers in other places. Modern cars, for example, have anywhere from around 20 computers to more than 100 to control all the systems that allow you to move, brake, monitor the air conditioning, and control the entertainment system.

The smartphone is the computer many people use more than anything else in a typical day. A modern phone has a 64-bit processor in it, whatever a “64-bit processor” is. The amount of memory used for running all those apps might be 3Gb, which means 3 gigabytes. What’s a “giga” and what is a byte?

All these computers are called classical computers and the original ideas for them go back to the 1940s. Sounding more scientific, we say these computers have a von Neumann architecture, named after the mathematician and physicist John von Neumann.

It’s not the 1940s anymore, obviously, but more than seventy years later we still have the modern versions of these machines in so many parts of our lives. Through the years, the “thinking” components, the processors, have gotten faster and faster. The amount of memory has also gotten larger so we can run more―and bigger―apps that do some pretty sophisticated things. The improvements in graphics processors have given us better and better games. The amount of storage has skyrocketed in the last couple of decades, so we can have more and more apps and games and photos and videos on devices we carry around with us. When it comes to these classical computers and the way they have developed, “more is better.”

We can say similar things about the computer servers that run businesses and the Internet around the world. Do you store your photos in the cloud? Where is that exactly? How many photos can you keep there and how much does it cost? How quickly can your photos and all the other data you need move back and forth to that nebulous place?

It’s remarkable, all this computer power. It seems like every generation of computers will continue to get faster and faster and be able to do more and more for us. There’s no end in sight for how powerful these small and large machines will get to entertain us, connect us to our friends and family, and solve the important problems in the world.

Except . . . that’s false.

While there will continue to be some improvements, we will not see anything like the doubling in processor power every two years that happened starting in the mid-1960s. This doubling went by the name of Moore’s Law and went something like “every two years processors will get twice as fast, half as large, and use half as much energy.”

These proportions like “double” and “half” are approximate, but physicists and engineers really did make extraordinary progress for many years. That’s why you can have a computer in a watch on your wrist that is more powerful than a system that took up an entire room forty years ago.

A key problem is the part where I said processors will get half as large. We can’t keep making transistors and circuits smaller and smaller indefinitely. We’ll start to get so small that we approach the atomic level. The electronics will get so crowded that when we try to tell part of a processor to do something a nearby component will also get affected.

There’s another deeper and more fundamental question. Just because we created an architecture over seventy years ago and have vastly improved it, does that mean all kinds of problems can eventually be successfully tackled by computers using that design? Put another way, why do we think the kinds of computers we have now might eventually be suitable for solving every possible problem? Will “more is better” run out of steam if we keep to the same kind of computer technology? Is there something wrong or limiting about...

작가정보

저자(글) Robert S. Sutor

Robert S. Sutor has been a technical leader and executive in the IT industry for over 30 years. More than two decades of that have been spent in IBM Research in New York. During his time there, he worked on or led efforts in symbolic mathematical computation, optimization, AI, blockchain, and quantum computing. He is the co-author of several research papers and the book, Axiom: The Scientific Computation System with the late Richard D. Jenks.He also was an executive on the software side of the business in areas including emerging industry standards, software on Linux, mobile, and open source. He's a theoretical mathematician by training, has a Ph.D. from Princeton University, and an undergraduate degree from Harvard College. He started coding when he was 15 and has used most of the programming languages that have come along.

이 상품의 총서

Klover리뷰 (0)

Klover리뷰 안내
Klover(Kyobo-lover)는 교보를 애용해 주시는 고객님들이 남겨주신 평점과 감상을 바탕으로, 다양한 정보를 전달하는 교보문고의 리뷰 서비스입니다.
1. 리워드 안내
구매 후 90일 이내에 평점 작성 시 e교환권 100원을 적립해 드립니다.
  • - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • - 리워드는 1,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다.
  • - 리워드는 한 상품에 최초 1회만 제공됩니다.
  • - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
2. 운영 원칙 안내
Klover리뷰를 통한 리뷰를 작성해 주셔서 감사합니다. 자유로운 의사 표현의 공간인 만큼 타인에 대한 배려를 부탁합니다. 일부 타인의 권리를 침해하거나 불편을 끼치는 것을 방지하기 위해 아래에 해당하는 Klover 리뷰는 별도의 통보 없이 삭제될 수 있습니다.
  • 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
  • 도서와 무관한 내용의 리뷰
  • 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
  • 의성어나 의태어 등 내용의 의미가 없는 리뷰

구매 후 리뷰 작성 시, e교환권 100원 적립

문장수집

문장수집 안내
문장수집은 고객님들이 직접 선정한 책의 좋은 문장을 보여 주는 교보문고의 새로운 서비스 입니다. 교보eBook 앱에서 도서 열람 후 문장 하이라이트 하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다. 마음을 두드린 문장들을 기록하고 좋은 글귀들은 ‘좋아요’ 하여 모아보세요. 도서 문장과 무관한 내용 등록 시 별도 통보없이 삭제될 수 있습니다.
리워드 안내
  • 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
  • e교환권은 적립일로부터 180일 동안 사용 가능합니다.
  • 리워드는 1,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다.
  • 리워드는 한 상품에 최초 1회만 제공됩니다.
  • sam 이용권 구매 상품/오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.

구매 후 문장수집 작성 시, e교환권 100원 적립

    교보eBook 첫 방문을 환영 합니다!

    신규가입 혜택 지급이 완료 되었습니다.

    바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
    지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!

    교보e캐시 1,000원
    TOP
    신간 알림 안내
    Dancing with Qubits 웹툰 신간 알림이 신청되었습니다.
    신간 알림 안내
    Dancing with Qubits 웹툰 신간 알림이 취소되었습니다.
    리뷰작성
    • 구매 후 90일 이내 작성 시, e교환권 100원 (최초1회)
    • 리워드 제외 상품 : 마이 > 라이브러리 > Klover리뷰 > 리워드 안내 참고
    • 콘텐츠 다운로드 또는 바로보기 완료 후 리뷰 작성 시 익일 제공
    감성 태그

    가장 와 닿는 하나의 키워드를 선택해주세요.

    사진 첨부(선택) 0 / 5

    총 5MB 이하로 jpg,jpeg,png 파일만 업로드 가능합니다.

    신고/차단

    신고 사유를 선택해주세요.
    신고 내용은 이용약관 및 정책에 의해 처리됩니다.

    허위 신고일 경우, 신고자의 서비스 활동이 제한될 수
    있으니 유의하시어 신중하게 신고해주세요.


    이 글을 작성한 작성자의 모든 글은 블라인드 처리 됩니다.

    문장수집 작성

    구매 후 90일 이내 작성 시, e교환권 100원 적립

    eBook 문장수집은 웹에서 직접 타이핑 가능하나, 모바일 앱에서 도서를 열람하여 문장을 드래그하시면 직접 타이핑 하실 필요 없이 보다 편하게 남길 수 있습니다.

    P.
    Dancing with Qubits
    How quantum computing works and how it can change the world
    저자 모두보기
    저자(글)
    낭독자 모두보기
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 이용권입니다.
    차감하실 sam이용권을 선택하세요.
    sam 이용권 선택
    님이 보유하신 프리미엄 이용권입니다.
    선물하실 sam이용권을 선택하세요.
    결제완료
    e캐시 원 결제 계속 하시겠습니까?
    교보 e캐시 간편 결제
    sam 열람권 선물하기
    • 보유 권수 / 선물할 권수
      0권 / 1
    • 받는사람 이름
      받는사람 휴대전화
    • 구매한 이용권의 대한 잔여권수를 선물할 수 있습니다.
    • 열람권은 1인당 1권씩 선물 가능합니다.
    • 선물한 열람권이 ‘미등록’ 상태일 경우에만 ‘열람권 선물내역’화면에서 선물취소 가능합니다.
    • 선물한 열람권의 등록유효기간은 14일 입니다.
      (상대방이 기한내에 등록하지 않을 경우 소멸됩니다.)
    • 무제한 이용권일 경우 열람권 선물이 불가합니다.
    이 상품의 총서 전체보기
    네이버 책을 통해서 교보eBook 첫 구매 시
    교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 네이버 책을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)
    구글북액션을 통해서 교보eBook
    첫 구매 시 교보e캐시 지급해 드립니다.
    교보e캐시 1,000원
    • 첫 구매 후 3일 이내 다운로드 시 익일 자동 지급
    • 한 ID당 최초 1회 지급 / sam 이용권 제외
    • 구글북액션을 통해 교보eBook 구매 이력이 없는 회원 대상
    • 교보e캐시 1,000원 지급 (유효기간 지급일로부터 7일)