Feature Engineering Made Easy
2018년 01월 22일 출간
- eBook 상품 정보
- 파일 정보 PDF (5.93MB)
- ISBN 9781787286474
- 지원기기 교보eBook App, PC e서재, 리더기, 웹뷰어
-
교보eBook App
듣기(TTS) 가능
TTS 란?텍스트를 음성으로 읽어주는 기술입니다.
- 전자책의 편집 상태에 따라 본문의 흐름과 다르게 텍스트를 읽을 수 있습니다.
- 이미지 형태로 제작된 전자책 (예 : ZIP 파일)은 TTS 기능을 지원하지 않습니다.
PDF 필기가능 (Android, iOS)
쿠폰적용가 10,800원
10% 할인 | 5%P 적립이 상품은 배송되지 않는 디지털 상품이며,
교보eBook앱이나 웹뷰어에서 바로 이용가능합니다.
카드&결제 혜택
- 5만원 이상 구매 시 추가 2,000P
- 3만원 이상 구매 시, 등급별 2~4% 추가 최대 416P
- 리뷰 작성 시, e교환권 추가 최대 200원
작품소개
이 상품이 속한 분야
2: FEATURE UNDERSTANDING ? WHAT'S IN MY DATASET?
3: FEATURE IMPROVEMENT - CLEANING DATASETS
4: FEATURE CONSTRUCTION
5: FEATURE SELECTION
6: FEATURE TRANSFORMATIONS
7: FEATURE LEARNING
8: CASE STUDIES
▶What this book covers
- Chapter 1, Introduction to Feature Engineering, is an introduction to the basic terminology of feature engineering and a quick look at the types of problems we will be solving throughout this book.
- Chapter 2, Feature Understanding ?. What's in My Dataset?, looks at the types of data we will encounter in the wild and how to deal with each one separately or together.
- Chapter 3, Feature Improvement - Cleaning Datasets, explains various ways to fill in missing data and how different techniques lead to different structural changes in data that may lead to poorer machine learning performance.
- Chapter 4, Feature Construction, is a look at how we can create new features based on what was already given to us in an effort to inflate the structure of data.
- Chapter 5, Feature Selection, shows quantitative measures to decide which features are worthy of being kept in our data pipeline.
- Chapter 6, Feature Transformations, uses advanced linear algebra and mathematical techniques to impose a rigid structure on data for the purpose of enhancing performance of our pipelines.
- Chapter 7, Feature Learning, covers the use of state-of-the-art machine learning and artificial intelligence learning algorithms to discover latent features of our data that few humans could fathom.
- Chapter 8, Case Studies, is an array of case studies shown in order to solidify the ideas of feature engineering.
▶Editorial Review
This book will cover the topic of feature engineering. A huge part of the data science and machine learning pipeline, feature engineering includes the ability to identify, clean, construct, and discover new characteristics of data for the purpose of interpretation and predictive analysis.
In this book, we will be covering the entire process of feature engineering, from inspection to visualization, transformation, and beyond. We will be using both basic and advanced mathematical measures to transform our data into a form that's much more digestible by machines and machine learning pipelines.
By discovering and transforming, we, as data scientists, will be able to gain a whole new perspective on our data, enhancing not only our algorithms but also our insights.
인물정보
저자(글) Sinan Ozdemir
Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own startup, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams.After completing a Fellowship at the Y Combinator accelerator, Sinan spent most of his time working on his fast-growing company, while creating educational material for data science.
저자(글) Divya Susarla
Divya Susarla is an experienced leader in data methods, implementing and applying tactics across a range of industries and fields including investment management, social enterprise consulting, and wine marketing. She trained in data by way of specializing in Economics and Political Science at University of California, Irvine, cultivating a passion for teaching by developing an analytically based, international affairs curriculum for students through the Global Connect program.Divya is currently focused on natural language processing and generation techniques at Kylie.ai, a startup helping clients automate their customer support conversations. When she is not busy working on building Kylie.ai and writing educational content, she spends her time traveling across the globe and experimenting with new recipes at her home in Berkeley, CA.
이 상품의 총서
Klover리뷰 (0)
- - e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- - 리워드는 5,000원 이상 eBook, 오디오북, 동영상에 한해 다운로드 완료 후 리뷰 작성 시 익일 제공됩니다. (2024년 9월 30일부터 적용)
- - 리워드는 한 상품에 최초 1회만 제공됩니다.
- - sam 이용권 구매 상품 / 선물받은 eBook은 리워드 대상에서 제외됩니다.
- 도서나 타인에 대해 근거 없이 비방을 하거나 타인의 명예를 훼손할 수 있는 리뷰
- 도서와 무관한 내용의 리뷰
- 인신공격이나 욕설, 비속어, 혐오 발언이 개재된 리뷰
- 의성어나 의태어 등 내용의 의미가 없는 리뷰
구매 후 리뷰 작성 시, e교환권 100원 적립
문장수집
- 구매 후 90일 이내에 문장 수집 등록 시 e교환권 100원을 적립해 드립니다.
- e교환권은 적립일로부터 180일 동안 사용 가능합니다.
- 리워드는 5,000원 이상 eBook에 한해 다운로드 완료 후 문장수집 등록 시 제공됩니다. (2024년 9월 30일부터 적용)
- 리워드는 한 상품에 최초 1회만 제공됩니다.
- sam 이용권 구매 상품 / 선물받은 eBook / 오디오북·동영상 상품/주문취소/환불 시 리워드 대상에서 제외됩니다.
구매 후 문장수집 작성 시, e교환권 100원 적립
신규가입 혜택 지급이 완료 되었습니다.
바로 사용 가능한 교보e캐시 1,000원 (유효기간 7일)
지금 바로 교보eBook의 다양한 콘텐츠를 이용해 보세요!